Answer:

Step-by-step explanation:
we know that
The volume of a trough is equal to

where
B is the area of equilateral triangle
L is the length of a trough
step 1
Find the area of equilateral triangle B
The area of a equilateral triangle applying the law of sines is equal to

where


substitute


step 2
Find the volume of a trough

we have


substitute


Let W = width of package
Let H = height of package
Let L = length of package
The perimeter cab be one of the following:
P = 2(L + W), or
P = 2(L + H)
The perimeter of the cross section cannot exceed 108 in.
When the width is 10 in, then
2(L + 10) <= 108
L + 10 <= 54
L <= 44 in
When the height is 15 in, then
2(L + 15) <= 108
L + 15 <= 54
L <= 39 in
To satisfy both of these conditions requires that L <= 39 in.
Answer: 39 inches
Answer: I got D i'm not sure if that right though..
Step-by-step explanation:
Answer:
Probability that at least 490 do not result in birth defects = 0.1076
Step-by-step explanation:
Given - The proportion of U.S. births that result in a birth defect is approximately 1/33 according to the Centers for Disease Control and Prevention (CDC). A local hospital randomly selects five births and lets the random variable X count the number not resulting in a defect. Assume the births are independent.
To find - If 500 births were observed rather than only 5, what is the approximate probability that at least 490 do not result in birth defects
Proof -
Given that,
P(birth that result in a birth defect) = 1/33
P(birth that not result in a birth defect) = 1 - 1/33 = 32/33
Now,
Given that, n = 500
X = Number of birth that does not result in birth defects
Now,
P(X ≥ 490) =
=
+ .......+
= 0.04541 + ......+0.0000002079
= 0.1076
⇒Probability that at least 490 do not result in birth defects = 0.1076
Answer:
Option C.
Domain:
{3, 0, 2, 4}
Step-by-step explanation:
The domain is the set of all the values of x.