Answer:
7.6 ≤w
Step-by-step explanation:
Hey there!
In order to solve this inequality, you need to simplify the inequality like the following:
Subtract 3.4 from both sides
7.6 ≤w
This means that w is greater than or equal to 7.6
<h3>Given</h3>
trapezoid PSTK with ∠P=90°, KS = 13, KP = 12, ST = 8
<h3>Find</h3>
the area of PSTK
<h3>Solution</h3>
It helps to draw a diagram.
∆ KPS is a right triangle with hypotenuse 13 and leg 12. Then the other leg (PS) is given by the Pythagorean theorem as
... KS² = PS² + KP²
... 13² = PS² + 12²
... PS = √(169 -144) = 5
This is the height of the trapezoid, which has bases 12 and 8. Then the area of the trapezoid is
... A = (1/2)(b1 +b2)h
... A = (1/2)(12 +8)·5
... A = 50
The area of trapezoid PSTK is 50 square units.
Answer:
867
Step-by-step explanation:
622+180+100=902
902-35=867
Answer:
By exterior angle theorem, we have;
∠DBE = ∠H + ∠HEB = ∠ECD = ∠H + ∠HDC
∴ ∠H + ∠HEB = ∠H + ∠HDC
By addition property of equality, we have
∠HEB = ∠HDC
∠H = ∠H by reflexive property
∴ ΔHCD ~ ΔHEB by Angle Angle AA similarity postulate
∴ HE/HD = EB/DC, by the definition of similarity
Therefore, by cross multiplication, we have;
HE × DC = EB × HD
Therefore, by commutative property of multiplication, we have;
HE × DC = HD × EB
Step-by-step explanation:
Its math just use a calculator or something