Ok so we have movie ticket sales and we have 6x+9y=1,500. So for types of graphs, we have linear, exponential, quadratic, and those are the basic types of graphs. Now looking at the equation, we can quickly see that the answer is linear because, looking at the constant, 1500 and the other numbers, we can see the graph will be increasing linear. Hope this helped, feel free to ask questions if you have any!
Answer:
The solution is ![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
Step-by-step explanation:
From the question
The function given is 
The indefinite integral is mathematically represented as

Now let 
=> 
=> 
So

![= \frac{1}{2} \frac{tan^{-1} [\frac{u}{5} ]}{5} + C](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Btan%5E%7B-1%7D%20%5B%5Cfrac%7Bu%7D%7B5%7D%20%5D%7D%7B5%7D%20%20%2B%20%20C)
Now substituting for u
![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
A) Demand function
price (x) demand (D(x))
4 540
3.50 810
D - 540 810 - 540
----------- = -----------------
x - 4 3.50 - 4
D - 540
----------- = - 540
x - 4
D - 540 = - 540(x - 4)
D = -540x + 2160 + 540
D = 2700 - 540x
D(x) = 2700 - 540x
Revenue function, R(x)
R(x) = price * demand = x * D(x)
R(x) = x* (2700 - 540x) = 2700x - 540x^2
b) Profit, P(x)
profit = revenue - cost
P(x) = R(x) - 30
P(x) = [2700x - 540x^2] - 30
P(x) = 2700x - 540x^2 - 30
Largest possible profit => vertex of the parabola
vertex of 2700x - 540x^2 - 30
When you calculate the vertex you find x = 5 /2
=> P(x) = 3345
Answer: you should charge a log-on fee of $2.5 to have the largest profit, which is $3345.