5/4, -3Solve by Factoring 4x² + 7x - 15 = 02, -5Solve by Factoring x² + 3x - 10 = 0(1 ± i√11) / 2Solve using Quadratic Formula x² - x + 3 = 0(7 ± √3) / 2Solve using Quadratic Formula 2x² - 14x + 23 = 00, 2/3Solve by Factoring 6x² - 4x = 025/4<span>Complete the square to find the value of c.
x² - 5x + c</span>16<span>Complete the square to find the value of c.
x² + 8x + c</span>25<span>Complete the square to find the value of c.
x² - 10x + c</span>49/4<span>Complete the square to find the value of c.
x² + 7x + c</span>81/4<span>Complete the square to find the value of c.
x² - 9x + c</span>9<span>Complete the square to find the value of c.
x² + 6x + c</span>121/4<span>Complete the square to find the value of c.
x² - 11x + c</span>81<span>Complete the square to find the value of c.
x² + 18x + c</span>36<span>Complete the square to find the value of c.
x² - 12x + c</span>1<span>Complete the square to find the value of c.
x² + 2x + c</span>¼<span>Complete the square to find the value of c.
x² - x + c</span>100<span>Complete the square to find the value of c.
x² + 20x + c</span>225<span>Complete the square to find the value of c.
x² - 30x + c</span>9/4<span>Complete the square to find the value of c.
x² + 3x + c</span>4<span>Complete the square to find the value of c.
x² - 4x + c</span>121<span>Complete the square to find the value of c.
x² + 22x + c</span>144<span>Complete the square to find the value of c.
x² + 24x + c</span>2500<span>Complete the square to find the value of c.
x² - 100x + c</span>9/64<span>Complete the square to find the value of c.
x² + ¾x + c</span>1/16<span>Complete the square to find the value of c.
x² - ½x + c</span>f(x) = (x + ½)² + ¾Write in vertex form: f(x) = x² + x + 1f(x) = (x - 1)² + 3Write in vertex form: f(x) = 4 + x² - 2x(-5, -28)What are the coordinates of the vertex of f(x) = (x + 5)² - 28?(9, -21)What are the coordinates of the vertex of f(x) = (x - 9)² - 21?f(x) = (x - 8)² - 56Which function in vertex form is equivalent to f(x) = x² + 8 - 16x?f(x) = (x - 3)² + 9Write in vertex form: f(x) = x² - 6x + 18(-3, -13)What are the coordinates of the vertex of the function f(x) = 6x - 4 + x²?f(x) = (x - 3)² - 8Write in vertex form: f(x) = x² - 6x + 1f(x) = (x + 3)² - 6Write in vertex form: f(x) = x² + 6x + 3f(x) = (x + 5)² - 28Write in vertex form: f(x) = x² + 10x - 3f(x) = (x - 9)² - 21Write in vertex form: f(x) = x² - 18x + 600, -4Solve by graphing.0, 4Solve by graphing.±1Solve by graphing.±2Solve by graphing.-3, 1Solve by graphing.no real solutionsSolve by graphing.0Solve by graphing.<span>2</span>
Answer:
B. -3 1/2y + 2
Step-by-step explanation:
Our expression is:
.
Let's first distribute out that parentheses. Remember that distribution is simply taking the sum of the product of the outside term with each of the inside terms. Here, the outside term is 1/2 and the inside terms are 4 and -2y:

Now, we have:

We want to combine like terms, which means combining all the terms with y in them:

Remember that -7/2 can be written as the mixed number -3 1/2, so our final answer is:
-3 1/2y + 2
The answer is thus B.
<em>~ an aesthetics lover</em>
-35v - 56
Hope this helps! :))