Answer:
I got the first three but that's all I can do for now I have class as well currently. But for number 7 = 0, 8=15, 9= 71 and yeah best of luck on the last three.
As is the case for any polynomial, the domain of this one is (-infinity, +infinity).
To find the range, we need to determine the minimum value that f(x) can have. The coefficients here are a=2, b=6 and c = 2,
The x-coordinate of the vertex is x = -b/(2a), which here is x = -6/4 = -3/2.
Evaluate the function at x = 3/2 to find the y-coordinate of the vertex, which is also the smallest value the function can take on. That happens to be y = -5/2, so the range is [-5/2, infinity).
Well, by doing the work and trying to solve this equation, i have came to the terms that it is a no solution problem
The function g(x) is a translation to the right of 3 units and up 2 units of f(x), so the correct option is B.
<h3>Which statement is true regarding the vertical and horizontal translations from f(x) to g(x)?</h3>
For a given function f(x), we can write a vertical translation of n units as:
g(x) = f(x) + n
- If n < 0, the translation is downwards.
- if n > 0, the translation is upwards.
And a horizontal translation of n units as:
g(x) = f(x + n).
- if n > 0, the translation is to the left.
- if n < 0, the translation is to the right.
Here we have:
f(x) = (2/3)*x
g(x) = (2/3)*(x - 3) + 2
By comparing it with the general translations, we conclude that we have a traslation of 3 units to the right and 2 units up.
So the correct option is B.
If you want to learn more about translations:
brainly.com/question/24850937
#SPJ1