Answer:
5 bars for $4.00
Step-by-step explanation:
10 / 12 = 0.833 repeating
4 / 5 = 0.8
to get the equation of a line, we simply need two points, say for the Red one ... notice in the graph the lines passes through (0,2) and (-1,6), so let's use those
![\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{-1}~,~\stackrel{y_2}{6}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{6-2}{-1-0}\implies \cfrac{4}{-1}\implies -4 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=-4(x-0) \\\\\\ y-2=-4x\implies \blacktriangleright y=-4x+2 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B6-2%7D%7B-1-0%7D%5Cimplies%20%5Ccfrac%7B4%7D%7B-1%7D%5Cimplies%20-4%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-2%3D-4%28x-0%29%20%5C%5C%5C%5C%5C%5C%20y-2%3D-4x%5Cimplies%20%5Cblacktriangleright%20y%3D-4x%2B2%20%5Cblacktriangleleft)
now, for the Blue one, say let's use hmmm it passes through (0,2) and (1.6)
![\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{6}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{6-2}{1-0}\implies \cfrac{4}{1}\implies 4 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=4(x-0) \\\\\\ y-2=4x\implies \blacktriangleright y=4x+2 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B6-2%7D%7B1-0%7D%5Cimplies%20%5Ccfrac%7B4%7D%7B1%7D%5Cimplies%204%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-2%3D4%28x-0%29%20%5C%5C%5C%5C%5C%5C%20y-2%3D4x%5Cimplies%20%5Cblacktriangleright%20y%3D4x%2B2%20%5Cblacktriangleleft)
Answer:
There is none, there is no length of a circle
Step-by-step explanation: