since it has a diameter of 28, then its radius must be half that or 14.
![\textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=14 \end{cases}\implies A=\pi (14)^2\implies A=196\pi ~\hfill \stackrel{\stackrel{semi-circle}{half~that}}{98\pi }](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D14%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%2814%29%5E2%5Cimplies%20A%3D196%5Cpi%20~%5Chfill%20%5Cstackrel%7B%5Cstackrel%7Bsemi-circle%7D%7Bhalf~that%7D%7D%7B98%5Cpi%20%7D)
Answer:
Maximum: 1, Minimum: -3, Midline y = -1, Amplitude = 4, Period =
, Frequency
, equation : 
Step-by-step explanation:
<u>Sinusoid Functions</u>
It refers to the oscillating functions like the sine or cosine which range from a minimum and maximum value periodically.
The graph shown can give us all the information we need to answer these questions:
Maximum: 1
Minimum: -3
The midline goes through the center value (mean) of the max and min values, i.e.
Equation of the midline:

Amplitude is the difference between the maximum and minimum values

The period is the time it takes to complete a cycle. We can see the minimum value is first reached at x=0 and next at 
Thus the period is

The frequency is the reciprocal of the period:

The angular frequency is

The equation of the function is a negative cosine (since it starts at the minimum) or a shifted sine or cosine. We'll choose the negative cosine, knowing all the parameters:

Answer:
Vertical parabolas give an important piece of information: When the parabola opens up, the vertex is the lowest point on the graph — called the minimum, or min. When the parabola opens down, the vertex is the highest point on the graph — called the maximum, or max.
Step-by-step explanation:
Answer:
25
Step-by-step explanation:
Synthetic division shows the remainder to be 25-c. In order for that remainder to be zero, the value of c must be 25.
Answer:
one term is in this expression
Step-by-step explanation: