Answer:
The answer is -4.
Step-by-step explanation:
Because the 4 x 4 is 16
This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>
Answer:
Step-by-step explanation:
Given:
elongation, x = 0.50 in
Force, f = 9000 lb
Young modulus, E = 10,000,000 psi
Maximum Stress, Sm = 30000 psi
Length, L = 16 ft
Converting ft to in,
12 in = 1 ft
=16 × 12 = 192 in
Young modulus, E = stress/strain
Stress = force/area, A
Strain = elongation, x/Length, L
E = f × L/A × E
1 × 10^7 = stress/(0.5/16)
= 26041.7 psi
Minimum stress = 26041.7 psi
Maximum stress = 30,000 psi
Stress = force/area
Area = 9000/26041.7
= 0.3456 in^2
Stress = force/area
Area = 9000/30000
= 0.3 in^2
Using minimum area of 0.3 in^2,
A = (pi/4)(d^2)
0.3 in^2 = (pi/4)(d^2)
d = 0.618 inches
diameter, d = 0.618 inches
Answer:
Step-by-step explanation:
(4, -3)
The answer is 90 I think I multiplied 6*3 =18 *4 =72( for every rectangle )then 3*3 =9 for the square (2 squares ) 9*2=18