Using the two parallel line theorems we proved that ∠8 ≅ ∠4.
In the given question,
Given: f || g
Prove: ∠8 ≅ ∠4
We using given diagram in proving that ∠8 ≅ ∠4
Since f || g, by the Corresponding Angles Postulate which states that "When a transversal divides two parallel lines, the resulting angles are congruent." So
∠8≅∠6
Then by the Vertical Angles Theorem which states that "When two straight lines collide, two sets of linear pairs with identical angles are created."
∠6≅∠4
Then, by the Transitive Property of Congruence which states that "All shapes are congruent to one another if two shapes are congruent to the third shape."
∠8 ≅ ∠4
Hence, we proved that ∠8 ≅ ∠4.
To learn more about parallel line theorems link is here
brainly.com/question/27033529
#SPJ1
If the function is: f(x) = 4^x - 8
D = {XeR}
R = {YeR|Y≥0}
if the function is: <span>f(x)=4^(x-8)
</span>D = {XeR}
R = {YeR|Y≥ -8}
W is equal to 6 because 6/3=2 so 2+6=8