Answer:
Arc length MK = 15.45 units (nearest hundredth)
Arc measure = 58.24°
Step-by-step explanation:
Calculate the measure of the angle KLN (as this equals m∠KLM which is the measure of arc MK)
ΔKNL is a right triangle, so we can use the cos trig ratio to find ∠KLM:
![\sf \cos(\theta)=\dfrac{A}{H}](https://tex.z-dn.net/?f=%5Csf%20%5Ccos%28%5Ctheta%29%3D%5Cdfrac%7BA%7D%7BH%7D)
where:
is the angle- A is the side adjacent the angle
- H is the hypotenuse (the side opposite the right angle)
Given:
= ∠KLM- A = LN = 8
- H = KL = 15.2
![\implies \sf \cos(KLM)=\dfrac{8}{15.2}](https://tex.z-dn.net/?f=%5Cimplies%20%5Csf%20%5Ccos%28KLM%29%3D%5Cdfrac%7B8%7D%7B15.2%7D)
![\implies \sf \angle KLM=\cos^{-1}\left(\dfrac{8}{15.2}\right)](https://tex.z-dn.net/?f=%5Cimplies%20%5Csf%20%5Cangle%20KLM%3D%5Ccos%5E%7B-1%7D%5Cleft%28%5Cdfrac%7B8%7D%7B15.2%7D%5Cright%29)
![\implies \sf \angle KLM=58.24313614^{\circ}](https://tex.z-dn.net/?f=%5Cimplies%20%5Csf%20%5Cangle%20KLM%3D58.24313614%5E%7B%5Ccirc%7D)
Therefore, the measure of arc MK = 58.24° (nearest hundredth)
![\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle)}](https://tex.z-dn.net/?f=%5Ctextsf%7BArc%20length%7D%3D2%20%5Cpi%20r%5Cleft%28%5Cdfrac%7B%5Ctheta%7D%7B360%5E%7B%5Ccirc%7D%7D%5Cright%29%20%5Cquad%20%5Ctextsf%7B%28where%20r%20is%20the%20radius%20and%7D%5C%3A%5Ctheta%5C%3A%7B%5Ctextsf%7Bis%20the%20angle%29%7D)
Given:
- r = 15.2
- ∠KLM = 58.24313614°
![\implies \textsf{Arc length MK}=2 \pi (15.2)\left(\dfrac{\sf \angle KLM}{360^{\circ}}\right)](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctextsf%7BArc%20length%20MK%7D%3D2%20%5Cpi%20%2815.2%29%5Cleft%28%5Cdfrac%7B%5Csf%20%5Cangle%20KLM%7D%7B360%5E%7B%5Ccirc%7D%7D%5Cright%29)
![\implies \textsf{Arc length MK}=\sf 15.45132428\:units](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctextsf%7BArc%20length%20MK%7D%3D%5Csf%2015.45132428%5C%3Aunits)
Answer:
Step-by-step explanation:
Take the negative exponent in the denominator to make it positive
Example = (2^-3)
= 1/2³
Here is the answer OwO:
A 12-foot flagpole casts a nine-foot shadow. The measure from the top of the shadow to the top of the flag pole is 15.
Here is the explanation/work OwO:
<u><em>Switch sides.</em></u>
c^2=12^2+9^2
<u><em>12^2=144</em></u>
c^2=144+9^2
<u><em>9^2=81</em></u>
c^2=144+81
<u><em>Add the numbers: 144 + 81 = 225</em></u>
c^2=225
<u><em>For x^2 = f(a) the solution is √f(a)</em></u>
c = 15
Therefore, your answer will be 15.
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
Sorry if I am late. Hope this helps!! ^^