QUESTION:
The code for a lock consists of 5 digits (0-9). The last number cannot be 0 or 1. How many different codes are possible.
ANSWER:
Since in this particular scenario, the order of the numbers matter, we can use the Permutation Formula:–
- P(n,r) = n!/(n−r)! where n is the number of numbers in the set and r is the subset.
Since there are 10 digits to choose from, we can assume that n = 10.
Similarly, since there are 5 numbers that need to be chosen out of the ten, we can assume that r = 5.
Now, plug these values into the formula and solve:
= 10!(10−5)!
= 10!5!
= 10⋅9⋅8⋅7⋅6
= 30240.
The point-slope form:

We have the points (1, 2) and (3, 6). Substitute:

4 + 2x = 7
2x = 7 - 4 = 3
x = 3/2 = 1.5 inches
Answer:
100%
Step-by-step explanation:
Start with x.
x = x/1
Increase the numerator by 60% to 1.6x.
Decrease the numerator by 20% to 0.8.
The new fraction is
1.6x/0.8
Do the division.
1.6x/0.8 = 2x
The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.
The increase is 100%.
Answer:
25
Step-by-step explanation:
maybe this will help you