Answer: Height at which the wire is attached to the pole is 12 feet.
Explanation:
Since we have given that
Length of the wire = 20 feet
Let the height at which wire is attached to the pole be h
and distance along the ground from the bottom of the pole to the end of the wire be x+4
Now, it forms a right angle triangle so, we can apply "Pythagorus theorem".
But height cant be negative so, height will be 12 feet.
Hence, height at which the wire is attached to the pole is 12 feet.
Answer:
206
Step-by-step explanation:
The formula for this problem would be -310 + 13(8) which = 206
The dimensions of a box that have the minium surface area for a given Volume is such that it is a cube. This is the three dimensions are equal:
V = x*y*z , x=y=z => V = x^3, that will let you solve for x,
x = ∛(V) = ∛(250cm^3) = 6.30 cm.
Answer: 6.30 cm * 6.30cm * 6.30cm. This is a cube of side 6.30cm.
The demonstration of that the shape the minimize the volume of a box is cubic (all the dimensions equal) corresponds to a higher level (multivariable calculus).
I guess it is not the intention of the problem that you prove or even know how to prove it (unless you are taking an advanced course).
Nevertheless, the way to do it is starting by stating the equations for surface and apply two variable derivation to optimize (minimize) the surface.
You do not need to follow with next part if you do not need to understand how to show that the cube is the shape that minimize the surface.
If you call x, y, z the three dimensions, the surface is:
S = 2xy + 2xz + 2yz (two faces xy, two faces xz and two faces yz).
Now use the Volumen formula to eliminate one variable, let's say z:
V = x*y*z => z = V /(x*y)
=> S = 2xy + 2x [V/(xy)[ + 2y[V/(xy)] = 2xy + 2V/y + 2V/x
Now find dS, which needs the use of partial derivatives. It drives to:
dS = [2y - 2V/(x^2)] dx + [2x - 2V/(y^2) ] dy = 0
By the properties of the total diferentiation you have that:
2y - 2V/(x^2) = 0 and 2x - 2V/(y^2) = 0
2y - 2V/(x^2) = 0 => V = y*x^2
2x - 2V/(y^2) = 0 => V = x*y^2
=> y*x^2 = x*y^2 => y*x^2 - x*y^2 = xy (x - y) = 0 => x = y
Now that you have shown that x = y.
You can rewrite the equation for S and derive it again:
S = 2xy + 2V/y + 2V/x, x = y => S = 2x^2 + 2V/x + 2V/x = 2x^2 + 4V/x
Now find S'
S' = 4x - 4V/(x^2) = 0 => V/(x^2) = x => V =x^3.
Which is the proof that the box is cubic.
Answer:
x = 5
x = 11/2
x = -5/2
x = 3
x = 5/2
Step-by-step explanation: