Answer: 80
Step-by-step explanation:
We can use the formula
, where
are the lengths of the diagonals.
By the distance formula,

So, the area is 
The more expensive bike could be a bigger size so in stead of being a 20 inch it could be a 24 inch, another option is that one bike is made by a lower brand name company hile the expensive one is a better well know company so in that case the extra $100 is just a added price for the name. Last option is one's on sell and ones not. I hope this helped! :)
Answer:
8 and 12
Step-by-step explanation:
Sides on one side of the angle bisector are proportional to those on the other side. In the attached figure, that means
AC/AB = CD/BD = 2/3
The perimeter is the sum of the side lengths, so is ...
25 = AB + BC + AC
25 = AB + 5 + (2/3)AB . . . . . . substituting AC = 2/3·AB. BC = 2+3 = 5.
20 = 5/3·AB
12 = AB
AC = 2/3·12 = 8
_____
<em>Alternate solution</em>
The sum of ratio units is 2+3 = 5, so each one must stand for 25/5 = 5 units of length.
That is, the total of lengths on one side of the angle bisector (AC+CD) is 2·5 = 10 units, and the total of lengths on the other side (AB+BD) is 3·5 = 15 units. Since 2 of the 10 units are in the segment being divided (CD), the other 8 must be in that side of the triangle (AC).
Likewise, 3 of the 15 units are in the segment being divided (BD), so the other 12 units are in that side of the triangle (AB).
The remaining sides of the triangle are AB=12 and AC=8.
Answer:
-6,2
Step-by-step explanation:
im not sure what the answer is
Answer:
Region D.
Step-by-step explanation:
Here we have two inequalities:
y ≤ 1/2x − 3
y < −2/3x + 1
First, we can see that the first inequality has a positive slope and the symbol (≤) so the values of the line itself are solutions, this line is the solid line in the graph.
And we have that:
y ≤ 1/2x − 3
y must be smaller or equal than the solid line, so here we look at the regions below the solid line, which are region D and region C.
Now let's look at the other one:
y < −2/3x + 1
y = (-2/3)*x + 1
is the dashed line in the graph.
And we have:
y < −2/3x + 1
So y is smaller than the values of the line, so we need to look at the region that is below de dashed line.
The regions below the dashed line are region A and region D.
The solution for the system:
y ≤ 1/2x − 3
y < −2/3x + 1
Is the region that is a solution for both inequalities, we can see that the only region that is a solution for both of them is region D.
Then the correct option is region D.