Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
true
Explanation:
it is concave when it diverging
Answer:
356.33 J
Explanation:
Energy: This can be defined as the ability or the capacity to do work. The S.I unit of Energy is Joules (J).
The Energy stored in a capacitor = 1/2CV²
E = 1/2CV².............................. Equation 1.
Where E = Energy stored in a capacitor, C = capacitance of the capacitor, V = potential difference across the plates of the capacitor.
Given: C = 10.5 μF = 10.5×10⁻⁶ F, V = 8250 V.
Substitute into equation 1
E = 1/2(10.5×10⁻⁶)(8250)²
E = 357.33 J.
Thus the energy stored in the defibrillator = 356.33 J