Relative velocity is the velocity of an object or observer B in the rest frame of another object or observer A
Answer:
d = 1.24 kg/m³
v = 0.81 m³/kg
Explanation:
To do this, we need to analyze the given data and know the expressions we need to use here to do calculations.
We have a pressure of 1.05 atm and 300 K of temperature. To determine the density, we need to use a similar expression of an ideal gas. In this case, instead of using moles, we will use density:
P = dRT
d = P/RT (1)
Where:
R: universal constant of gases
d: density.
From here we can determine the specific volume by using the following expression:
v = 1/d (2)
Now, as we are looking for density, we need to convert the units of pressure in atm to Pascal (or N/m) and the conversion is the following:
P = 1.05 atm * 1.013x10⁵ N/m atm = 106,365 N/m
Now, using R as 287 the density would be:
d = 106,365 / (287 * 300)
<h2>
d = 1.24 kg/m³</h2>
Finally the specific volume:
v = 1 / 1.41
<h2>
v = 0.81 m³/kg</h2>
Hope this helps
Answer:
A(many people think that no energy or matter exists outside the universe)
Explanation:
Answer:
average speed = total distance/total time
Answer:


Explanation:
Given:
- mass of the object,

- elastic constant of the connected spring,

- coefficient of static friction between the object and the surface,

(a)
Let x be the maximum distance of stretch without moving the mass.
<em>The spring can be stretched up to the limiting frictional force 'f' till the body is stationary.</em>


where:
N = m.g = the normal reaction force acting on the body under steady state.


(b)
Now, according to the question:
- Amplitude of oscillation,

- coefficient of kinetic friction between the object and the surface,

Let d be the total distance the object travels before stopping.
<em>Now, the energy stored in the spring due to vibration of amplitude:</em>

<u><em>This energy will be equal to the work done by the kinetic friction to stop it.</em></u>




<em>is the total distance does it travel before stopping.</em>