Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!
The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.
My opinion, the answer is b
<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>