To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then

The amount of substance per volume is the density, then

Replacing with our values,


Finally the specific volume would be


Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
D. They are heterotrophs that digest food internally.
J can get answer on this way:
Ek=m*V*V/2= (24kg*2m/s*2m/s)/2=48 Ј
Answer:
a = -4/5 m/s^2
Explanation:
Acceleration = change in velocity / time
change in velocity = final velocity - initial velocity
a = (20 m/s - 60 m/s) / 50 s
a = -40 m/s / 50 s
a = -4/5 m/s^2
hope this helps! <3