Answer:

Explanation:
To solve this problem we use the formula for accelerated motion:

We will take the initial position as our reference (
) and the downward direction as positive. Since the rock departs from rest we have:

Which means our acceleration would be:

Using our values:

consider the motion in Y-direction
v₀ = initial velocity = 29 Sin62 = 25.6 m/s
a = acceleration = - 9.8 m/s²
t = time of travel
Y = vertical displacement = - 0.89 m
using the equation
Y = v₀ t + (0.5) a t²
- 0.89 = (25.6) t + (0.5) (- 9.8) t²
t = 5.3 sec
consider the motion along the horizontal direction :
v₀ = initial velocity = 29 Cos62 = 13.6 m/s
a = acceleration = 0 m/s²
t = time of travel = 5.3 sec
X = horizontal displacement =?
using the equation
X = v₀ t + (0.5) a t²
X = (13.6) (5.3) + (0.5) (0) t²
X = 72.1 m
d = distance traveled by the center fielder to catch the ball = 107 - x = 107 - 72.1 = 34.9 m
t = time taken = 5.3 sec
v = speed of center fielder
using the equation
v = d/t
v = 34.9/5.3
v = 6.6 m/s
Answer:
The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Explanation:
We know that,
Mass of electron 
Rest mass energy for electron = 0.511 Mev
(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev
Using formula of rest,



(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev
Using formula of rest,



Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Answer:
Hey!
Your answer should be D!
Explanation:
In a transformer Np / Ns is called the voltage ratio. If Ns is less than Np then Vs is less than Vp. This is called a step-down transformer as the voltage is reduced.
(source from google.com!)