Answer:

Because the 
The integral converges to 
Step-by-step explanation:
For this case we want to find the following integral:

And we can solve the integral on this way:


And if we evaluate the integral using the fundamental theorem of calculus we got:

Because the 
The integral converges to 
<h3>
There are 2 answers: choice C, choice D</h3>
====================================================
Explanation:
32% = 32/100 = 0.32
32% of 400 = 0.32*400 = 400(0.32), which adds onto the original 400 to get 400+400(0.32). This is why choice D is one of the answers.
We can factor out the GCF 400 to go from 400+400(0.32) to 400(1+0.32) which then simplifies to 400(1.32) or just 400*1.32. This shows choice C is the other answer. Using a calculator,
400+400(0.32) = 400 + 128 = 528
400*1.32 = 528
meaning that 400+400(0.32) = 400*1.32
The other answer choices result in other values, showing that they aren't equivalent to 528.
Answer: The dimensions are: " 1.5 mi. × ³⁄₁₀ mi. " .
_______________________________________________
{ length = 1.5 mi. ; width = ³⁄₁₀ mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:
A = L * w ;
in which: A = Area = (9/20) mi.² ,
L = Length = ?
w = width = (1/5)*L = (L/5) = ?
________________________________________
A = L * w ; we want to find the dimensions; that is, the values for
"Length (L)" and "width (w)" ;
_______________________________________
Plug in our given values:
_______________________________________
(9/20) mi.² = L * (L/5) ; in which: "w = L/5" ;
→ (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
↔ L² / 5 = 9/20 ;
→ (L² * ? / 5 * ?) = 9/20 ?
→ 20÷5 = 4 ; so; L² *4 = 9 ;
↔ 4 L² = 9 ;
→ Divide EACH side of the equation by "4" ;
→ (4 L²) / 4 = 9/4 ;
______________________________________
to get: → L² = 9/4 ;
Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________
→ ⁺√(L²) = ⁺√(9/4) ;
→ L = (√9) / (√4) ;
→ L = 3/2 ;
→ w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??
→ (3/2)mi. * (3/10)mi. = (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are:
Length = (3/2) mi. ; write as: 1.5 mi.
width = ³⁄₁₀ mi.
___________________________________________________
or; write as: " 1.5 mi. × ³⁄₁₀ mi. " .
___________________________________________________