9(7 + 8) = (9 x 7) + (9 x 8) = 63 + 72 = 135
Answer:
a- 32,52
b-20+32=52
Step-by-step explanation:
I think there is only one 4
as following 4,8,12,20
4+8=12
8+12=20
20+12=32
20+32=52
52+32=84
84+52=136
136+84=220
136+220=356
so 4,8,12,20,32,52,84,136,220,356
Complete Question
The complete Question is attached below
Answer:
Option D
Step-by-step explanation:
From the question we are told that:
Slant asymptote of 
Vertical asymptote at 
Points (0,6)
Generally the Denominator is give as
With
Vertical Asymptote at

Therefore
Denominator = (x-1)
Generally Slant asympote 2x Gives the Coefficient of the numerator
Therefore
The expression for a rational function f(x) that satisfies the conditions

Option D
Answer:
it's a B because it's the best answer for this quistion like they are saying IF I do this Then this should happen
Check the picture below.
since we know the radius of the larger semicircle is 8, thus its diameter is 16, which is the length of one side of the equilateral triangle. We also know the smaller semicircle has a radius of 1/3, and thus a diameter of 2/3, namely the lenght of one side of the small equilateral triangle.
now, if we just can get the area of the larger figure and the area of the smaller one and subtract the smaller from the larger, we'll be in effect making a hole/gap in the larger and what's leftover is the shaded figure.
![\bf \stackrel{\textit{area of a semi-circle}}{A=\cfrac{1}{2}\pi r^2\qquad r=radius}~\hspace{10em}\stackrel{\textit{area of an equilateral triangle}}{A=\cfrac{s^2\sqrt{3}}{4}\qquad s=\stackrel{side's}{length}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\left[ \stackrel{\textit{larger figure}}{\cfrac{1}{2}\pi 8^2~~+~~\cfrac{16^2\sqrt{3}}{4}} \right]\qquad -\qquad \left[ \cfrac{1}{2}\pi \left( \cfrac{1}{3} \right)^2 +\cfrac{\left( \frac{2}{3} \right)^2\sqrt{3}}{4}\right]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20semi-circle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2%5Cqquad%20r%3Dradius%7D~%5Chspace%7B10em%7D%5Cstackrel%7B%5Ctextit%7Barea%20of%20an%20equilateral%20triangle%7D%7D%7BA%3D%5Ccfrac%7Bs%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cqquad%20s%3D%5Cstackrel%7Bside%27s%7D%7Blength%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cleft%5B%20%5Cstackrel%7B%5Ctextit%7Blarger%20figure%7D%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%208%5E2~~%2B~~%5Ccfrac%7B16%5E2%5Csqrt%7B3%7D%7D%7B4%7D%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5E2%20%2B%5Ccfrac%7B%5Cleft%28%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright%29%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cright%5D%7D)
![\bf \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\frac{4}{9}\sqrt{3}}{4} \right] \\\\\\ \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\sqrt{3}}{9} \right]~~\approx~~ 211.38 - 0.37~~\approx~~ 211.01](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Cfrac%7B4%7D%7B9%7D%5Csqrt%7B3%7D%7D%7B4%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Csqrt%7B3%7D%7D%7B9%7D%20%5Cright%5D~~%5Capprox~~%20211.38%20-%200.37~~%5Capprox~~%20211.01)