Answer:To find a scale factor between two similar figures, find two corresponding sides and write the ratio of the two sides. If you begin with the smaller figure, your scale factor will be less than one. If you begin with the larger figure, your scale factor will be greater than one.
Step-by-step explanation : )
4 6/9= 38/9
7 5/3= 26/3
3 7/8= 31/8
5 19/14 =89/14
Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!
Right angle
Te reason being is that it has a 90° corner.
Hoped this helped
D a quadrilateral with one pair of parallel sides