Answer:
20
Step-by-step explanation:
Answer:
See below.
Step-by-step explanation:
Party A
y = x^2 + 1
For each value of x in the table, substitute x in the equation with that value and evaluate y.
x = -2: y = (-2)^2 + 1 = 4 + 1 = 5
x = -1: y = (-1)^2 + 1 = 1 + 1 = 2
Do the same for x = 0, x = 1, x = 2
x y
-2 5
-1 2
0 1
1 2
2 5
Part B
Look at points (-2, 5) and (-1, 2). The change in x from (-2, 5) to (-1, 2) is 1. The change in y is -3.
Now let's look at two other points which have a change in x of 1. Look at points (0, 1) and (1, 2). The change in x from (0, 1) to (1, 2) is 1. The change in y is 1.
You can see that for the first two points, a change of 1 in x produces a change of -3 in y, but for the second two points, the same change of 1 in x produce a change of 1 in y. Since the same change of x does not always produce the same change in y, the function is nonlinear.
Answer: A
Answer:
(x)=
+1
Step-by-step explanation:
Answer:
117.5 or 235/2
Step-by-step explanation:
We can set up an equation for this problem:
Lets Joe's weight be x
then:
2x -5 = 230
therefore:
2x = 235
x = 117.5 or 235/2
Given the function:
f(x) = x³ + 3x² - 4x + 5
The graph of the function is (taken f:
According to the graph above, the maximum and minimum are 18.13 and 3.87, respectively