1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
3 years ago
14

Explain what absolute value is

Mathematics
1 answer:
Fed [463]3 years ago
5 0

Answer:

Absolute Value describes the distance of a number line from 0 without considering which direction from 0 the number lies. The absolute value of a number is never negative. For example the absolute value of -5 is 5.

The absolute value is NEVER negative.

You might be interested in
Jamal is planting seeds for a garden nursery.He plants 9 seeds in each container.If Jamal has 296 seeds to plant , about how man
ludmilkaskok [199]
He will use 33 containers because 9 goes into 296 32.8 times but you cant have .8 of a container so you round it up to 33
8 0
3 years ago
Find the nonpermissible replacement for x in this expression <img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B-8x%7D" id="TexF
iren2701 [21]

Answer:

  0

Step-by-step explanation:

It is not permissible for the denominator to be zero, so the "nonpermissible replacement" for x is 0.

8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
How many repeating digits are in 0 536?
Inga [223]
Are there any repeating digits? There isn’t. Remember, on a device make sure you put 3 dots next to a decimal to show it’s repeating.
4 0
3 years ago
Read 2 more answers
Umber<br> 8. What is the value of the expression -<br> -g-(-5)<br> =-9 -<br> 5<br> 5
pantera1 [17]

First, we want to subtract the numbers within the parenthesis. However, to do this we must put each number over a common denominator. We can do his by multiplying

6

by the appropriate for of

1

:

2

3

(

6

−

5

6

)

⇒

2

3

(

[

6

6

×

6

]

−

5

6

)

⇒

2

3

(

36

6

−

5

6

)

⇒

2

3

(

31

6

)

Next, we can multiply the two fractions to complete the evaluation of the expression:

2

3

(

31

6

)

⇒

2

3

×

31

6

⇒

2

×

31

3

×

6

⇒

62

18

Now, we can factor the numerator and denominator so we can cancel common terms. This will give the simplest form of the fraction:

2

×

31

2

×

9

⇒

2

×

31

2

×

9

⇒

31

9

Hope this helps

Please give me Brainliest

I am really trying my best to get upgraded.  My other accont is acting up and I lost what I was trying to do to get upgraded again, so please give me Brainliest

7 0
3 years ago
Other questions:
  • Solve the following equation algebraically. Represent your answer in simplest radical form, if necessary.
    10·1 answer
  • Converting between a system 4.725 m = ft
    15·1 answer
  • What is the value of the expression 2w-2 when 5=w
    15·2 answers
  • Write an equation with the two points: (5,-2) and (3,4)
    12·1 answer
  • A function y = g(x) is graphed below. What is the solution to the equation g(x) = 3?
    5·1 answer
  • Find the value of Z in the picture
    7·2 answers
  • Place commas correley in the numbers​
    9·1 answer
  • I need help please...
    9·1 answer
  • Geometry Need help/........
    12·1 answer
  • Write the domain and rang of h using interval notation
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!