Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
- Implicit Differentiation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Implicit Differentiation:
![\displaystyle \frac{dy}{dx}[5x^2 - 2xy + 4y^3] = \frac{dy}{dx}[5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B5x%5E2%20-%202xy%20%2B%204y%5E3%5D%20%3D%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B5%5D)
- Rewrite [Derivative Property - Addition/Subtraction]:
![\displaystyle \frac{dy}{dx}[5x^2] - \frac{dy}{dx}[2xy] + \frac{dy}{dx}[4y^3] = \frac{dy}{dx}[5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B5x%5E2%5D%20-%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B2xy%5D%20%2B%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B4y%5E3%5D%20%3D%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B5%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle 5\frac{dy}{dx}[x^2] - 2\frac{dy}{dx}[xy] + 4\frac{dy}{dx}[y^3] = \frac{dy}{dx}[5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%205%5Cfrac%7Bdy%7D%7Bdx%7D%5Bx%5E2%5D%20-%202%5Cfrac%7Bdy%7D%7Bdx%7D%5Bxy%5D%20%2B%204%5Cfrac%7Bdy%7D%7Bdx%7D%5By%5E3%5D%20%3D%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B5%5D)
- Basic Power Rule [Chain Rule]:
![\displaystyle 10x - 2\frac{dy}{dx}[xy] + 12y^2y' = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010x%20-%202%5Cfrac%7Bdy%7D%7Bdx%7D%5Bxy%5D%20%2B%2012y%5E2y%27%20%3D%200)
- Product Rule:
![\displaystyle 10x - 2\bigg[ \frac{dy}{dx}[x]y + x\frac{dy}{dx}[y] \bigg] + 12y^2y' = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010x%20-%202%5Cbigg%5B%20%5Cfrac%7Bdy%7D%7Bdx%7D%5Bx%5Dy%20%2B%20x%5Cfrac%7Bdy%7D%7Bdx%7D%5By%5D%20%5Cbigg%5D%20%2B%2012y%5E2y%27%20%3D%200)
- Basic Power Rule [Chain Rule]:
![\displaystyle 10x - 2\bigg[ y + xy' \bigg] + 12y^2y' = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010x%20-%202%5Cbigg%5B%20y%20%2B%20xy%27%20%5Cbigg%5D%20%2B%2012y%5E2y%27%20%3D%200)
- Simplify:

- Isolate <em>y'</em> terms:

- Factor:

- Isolate <em>y'</em>:

- Factor:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
Answer:
-5√3 - 5√7/4
Step-by-step explanation:
Please mark me as brainliest
Answer:
BC = 88.88
Step-by-step explanation:
Comment.
This looks like an example of the cos law.
Givens
AB = 100 m
<A = 60 degrees
AC = 70 m
Cos(60) = 1/2
BC = ?
Formula
BC^2 = AB^2 + AC^2 - 2*AB*AC * Cos(60)
Solution
BC^2 = 100^2 + 70^2 - 2*100*70 * 1/2 1/2 and 2 cancel out
BC^2 = 10000 + 4900 - 7000
BC^2 = 7900 Take the sqr root of both sides
√BC^2 = √7900
BC = 88.88
12.5% = .125
32 x .125 = 4
32 + 4 = $36