The answer would be the last option. :)
Answer: ![\bold{10 = \sqrt {\left( {x- 8 } \right)^2 + \left( {y - 9 } \right)^2 }}](https://tex.z-dn.net/?f=%5Cbold%7B10%20%3D%20%5Csqrt%20%7B%5Cleft%28%20%7Bx-%208%20%7D%20%5Cright%29%5E2%20%2B%20%5Cleft%28%20%7By%20-%209%20%7D%20%5Cright%29%5E2%20%7D%7D)
Step-by-step explanation:
<u>Given:</u>
The coordinates of Point A: (8, 9)
The coordinates of Point B are unknown: (x, y)
The distance from A to B is 10 units
Then, using the distance formula:
![AB = \sqrt {\left( {x- 8 } \right)^2 + \left( {y - 9 } \right)^2 }](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%20%7B%5Cleft%28%20%7Bx-%208%20%7D%20%5Cright%29%5E2%20%2B%20%5Cleft%28%20%7By%20-%209%20%7D%20%5Cright%29%5E2%20%7D)
Therefore,
![10 = \sqrt {\left( {x- 8 } \right)^2 + \left( {y - 9 } \right)^2 }](https://tex.z-dn.net/?f=10%20%3D%20%5Csqrt%20%7B%5Cleft%28%20%7Bx-%208%20%7D%20%5Cright%29%5E2%20%2B%20%5Cleft%28%20%7By%20-%209%20%7D%20%5Cright%29%5E2%20%7D)
Answer:
The correct option is 1. The area of cross section area is 48 mm².
Step-by-step explanation:
From the find it is noticed that the cross section is a rectangle with length 4 mm and width is 12 mm.
The area of a rectangle is the product of its dimensions.
![A=l\times w](https://tex.z-dn.net/?f=A%3Dl%5Ctimes%20w)
Where, l is length of the rectangle and w is width of the rectangle.
The area of cross section is
![A=4\times 12](https://tex.z-dn.net/?f=A%3D4%5Ctimes%2012)
![A=48](https://tex.z-dn.net/?f=A%3D48)
Therefore the area of cross section area is 48 mm². Option 1 is correct.