Answer:
standard form - y= ax^2 + bx + c
vertex form - y= 2x^2 + 12x + 12
Step-by-step explanation:
I am not sure of what u needed but...
Answer:
-19i + 26j
Step-by-step explanation:
-3 (5i - 6j) + 2 (-2i + 4j)
Distribute/multiply the -3 to everything in the parentheses
-15i + 18j + 2 (-2i + 4j)
Distribute/multiply the 2 to everything in the parentheses
-15i + 18j -4i + 8j
Combine like terms
-19i +26j
If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
k = 4
Step-by-step explanation:
if f(x) is divided by (x - h) then f(h) is the remainder
f(x) = 2x³ - 3x² + kx - 1
divided by (x - 1) , so h = 1 , then
2(1)³ - 3(1)² + k(1) - 1 = 2
2 - 3 + k - 1 = 2
- 2 + k = 2 ( add 2 to both sides )
k = 4
Kinetic energy
Pushing is energy in motion and energy in motion is classified as (KE) kinetic energy