Yes. Conceptually, all the matrices in the group have the same structure, except for the variable component
. So, each matrix is identified by its top-right coefficient, since the other three entries remain constant.
However, let's prove in a more formal way that
![\phi:\ \mathbb{R} \to G,\quad \phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%3A%5C%20%5Cmathbb%7BR%7D%20%5Cto%20G%2C%5Cquad%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is an isomorphism.
First of all, it is injective: suppose
. Then, you trivially have
, because they are two different matrices:
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right],\quad \phi(y) = \left[\begin{array}{cc}1&y\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%2C%5Cquad%20%5Cphi%28y%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
Secondly, it is trivially surjective: the matrix
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is clearly the image of the real number x.
Finally,
and its inverse are both homomorphisms: if we consider the usual product between matrices to be the operation for the group G and the real numbers to be an additive group, we have
![\phi (x+y) = \left[\begin{array}{cc}1&x+y\\0&1\end{array}\right] = \left[\begin{array}{cc}1&x\\0&1\end{array}\right] \cdot \left[\begin{array}{cc}1&y\\0&1\end{array}\right] = \phi(x) \cdot \phi(y)](https://tex.z-dn.net/?f=%20%5Cphi%20%28x%2By%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%2By%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cphi%28x%29%20%5Ccdot%20%5Cphi%28y%29)
You divide 150 by 1500 and your is 10
Answer:
Distance of the keys on ground from the base of the tower = 7.38 ft
Step-by-step explanation:
Given:
Height of tower = 94 ft
Tower is leaning and makes an angle of 85.5 degrees from the ground.
Keys are dropped from the top of the tower.
To find the distance of the keys on ground from the base of the tower.
From the data given to us we can construct a right triangle ABC.
For the Δ ABC
AB= 94 ft
∠A= 85.5°
We can apply trigonometric ratio to find side BC which is the distance of the keys on ground from the base of the tower.
Using cosine ratio: 
In Δ ABC

Multiplying both sides by AB.



Substituting value of AB and cos 85.5°

∴ 
Distance of the keys on ground from the base of the tower = 7.38 ft
The answer would be 173.55.
Explanation: it just is
Answer:
Linear equations
Step-by-step explanation:
An easy and simple equation. F(t) = -15t +300