Answer:
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* arger mirrors decreases the angle of dispersion giving a better resolution of the bodies
Explanation:
Refracting telescopes get bigger every day for two main reasons.
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* the diffraction process for circular apertures is given by
θ = 1.22 λ / D
where d is the diameter of the mirror, therefore having larger mirrors decreases the angle of dispersion giving a better resolution of the bodies
Answer:
Newton’s third law of motion states that every action has an equal and opposite reaction. This indicates that forces always act in pairs. Reaction forces are equal and opposite, but they are not balanced forces because they act on different objects so they don’t cancel each other out.
Answer:
2.5 N
because Average speed is equal to distance divided by time
Answer:
The Earth’s lithosphere, which includes the crust and upper mantle, is made up of a series of pieces, or tectonic plates, that move slowly over time.
A divergent boundary occurs when two tectonic plates move away from each other. Along these boundaries, earthquakes are common and magma (molten rock) rises from the Earth’s mantle to the surface, solidifying to create new oceanic crust. The Mid-Atlantic Ridge and Pacific Ring of Fire are two examples of divergent plate boundaries.
When two plates come together, it is known as a convergent boundary. The impact of the colliding plates can cause the edges of one or both plates to buckle up into a mountain ranges or one of the plates may bend down into a deep seafloor trench. A chain of volcanoes often forms parallel to convergent plate boundaries and powerful earthquakes are common along these boundaries.
At convergent plate boundaries, oceanic crust is often forced down into the mantle where it begins to melt. Magma rises into and through the other plate, solidifying into granite, the rock that makes up the continents. Thus, at convergent boundaries, continental crust is created and oceanic crust is destroyed.
Two plates sliding past each other forms a transform plate boundary. One of the most famous transform plate boundaries occurs at the San Andreas fault zone, which extends underwater. Natural or human-made structures that cross a transform boundary are offset—split into pieces and carried in opposite directions. Rocks that line the boundary are pulverized as the plates grind along, creating a linear fault valley or undersea canyon. Earthquakes are common along these faults. In contrast to convergent and divergent boundaries, crust is cracked and broken at transform margins, but is not created or destroyed.