Answer:
All of the above
Explanation:
The magnitude of the magnetic force on a current-carrying wire held in a magnetic is given by the equation 
Where B = Strength of the magnetic field
I = The current carried by the wire
l = length of the wire in the magnetic field
θ = Angle between the wire and the magnetic field
Based on the relationship written above, the magnitude of the magnetic force on the current - carrying wire in the magnetic field depends on the strength of the magnetic field (B), length of the wire(l), current in the wire (I).
All the options are correct.
Answer:
(a) 
(b) 
Explanation:
(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

The radius of the wire = a

The surface current density 
(b) The current density is inversely proportional
......(1)
k is the constant of proportionality

........(2)
substituting (1) into (2)





substitute 

Answer:
How much does light bend? When light travels from air into water, it slows down, causing it to change direction slightly. This change of direction is called refraction. When light enters a more dense substance (higher refractive index), it 'bends' more towards the normal line.
Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
Answer: BOTH ARE TRUE
Explanation: Nondestructive testing or Evaluation is a term used in the field of science and technology to describe the evaluations, analysis or testing carried out on components of materials without destroying any part or components of the test materials. It is very useful in scientific research or industrial engineering environments. When any disruption of physical structure or configuration of a component will lead to discontinuing of the test, and it may not affect the usefulness of the affected parts.