Answer:
3.0 A Is the correct option
Explanation:
I = V / R
I = 12/ 4
= 3
1 Kg = 1,000g
Therefore 1.33 × 10^-7 g = 1.33 × 10^-10 kg
1m³ = 1,000,000cm³
Therefore 1 cm³ = 1 × 10^-6 m³
Dividing the mass per unit volume you get:
(1.33 × 10^-10 kg) ÷ (1 × 10^-6 m³)
= 1.33 × 10^(-10--6) = 1.33 × 10^(-10 + 6) = 1.33 × 10^-4 kg/m³
Density = 1.33 × 10^-4 kg/m³
<u>Answer:</u>
Positive acceleration is in third hour and negative acceleration is in second hour.
<u>Explanation:</u>
Velocity of car in first hour = 70 mph
Velocity of car in second hour = 60 mph
Velocity of car in third hour = 80 mph
Acceleration = Change in velocity / Time
Acceleration in second hour = (60 - 70)/1 = -10 mph²
Acceleration in third hour = (80 - 60)/1 = 20 mph²
So positive acceleration is in third hour and negative acceleration is in second hour.
Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.