Answer:
an equation with no solution
This is a function .................
D because one thousand nine hundred twenty divided by 8 equals two hundred and forty
In math, the associative property of multiplication allows us to group factors in different ways to get the same product. The product is the same, only the grouping is different. Example: Is (2 x 6) x 7 = 2 x (6 x 7) a true statement? Answer: Yes, because you can regroup the factors and get the same product.
(2x-3y)^5
(2x-3y)(2x-3y)(2x-3y)(2x-3y)(2x-3y)
1st and 2nd power :
(2x-3y)(2x-3y) = 2x(2x-3y)-3y(2x-3y) = 4x² - 6xy - 6xy + 9y²
= 4x² - 12xy + 9y²
3rd power:
(2x-3y)(4x² - 12xy + 9y²) = 2x(4x² - 12xy + 9y²) - 3y(4x² - 12xy + 9y²)
8x³ - 24x²y + 18xy² - 12x²y +36xy² - 27y³
8x³ - 24x²y - 12x²y + 18xy² + 36xy² - 27y³
8x³ - 36x²y + 54xy² - 27y³
4th power
(2x-3y)(8x³ - 36x²y + 54xy² - 27y³) = 2x(8x³ - 36x²y + 54xy² - 27y³) -3y(8x³ - 36x²y + 54xy² - 27y³) = 16x^4 - 72x³y + 108x²y² - 54xy³ - 24x³y + 108x²y² - 162xy³ + 81y^4
16x^4 - 72x³y - 24x³y + 108x²y² + 108x²y² - 54xy³ - 162xy³ + 81y^4
16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4
5th power
(2x-3y)(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
2x(</span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4) - 3y(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
= 32x^5 - 192x^4y + 432x</span>³y² - 432x²y³ + 162xy^4 - 48x^4y + 288x³y² - 648x²y³ + 648xy^4 - 243y^5
32x^5 - 192x^4y -48x^4y + 432x³y² + 288x³y² - 432x²y³ - 648x²y³ + 162xy^4 + 648xy^4 - 243y^5
32x^5 - 240x^4y + 720x³y² - 1,080x²y³ + 810xy^4 - 243y^5