The correct answer is: [C]: " (0, 24) " .
___________________________________________________________
Explanation:
___________________________________________________________
Given the quadratic function:
___________________________________________________________
→ " y = (x <span>− 8) (x + 3) " ; </span>← Note: Replace the "f(x)" with: "y" ;
→ Find the "y-intercept".
___________________________________________________________
→ Note: The "y-intercept" is the coordinate of the point(s) of the graph of the equation at which the graph crosses the "x-axis" when "x = 0" .
→ So; we set plug in "0" for "x" into our equation; and solve for "y" ;
→ " y = (x − 8) (x + 3) " ;
→ y = (0 − 8) (0 + 3) ;
→ y = (-8) * (3) ;
→ y = - 24 ;
___________________________________________________________
So, the "y -intercept" of the <em><u>given</u></em> quadratic function is:
the point at which: "x = 0 ; y = -24 " ;
→ that is; the point the coordinates: " (0, - 24) " ;
___________________________________________________________
→ which is: Answer choice: [C]: " (0, - 24) " .
___________________________________________________________
The correct answer is 1 7/15.
Answer:
13
Step-by-step explanation:
Answer:
-4, -6, -3, -5, -1. The inequality solved for n is n ≥ -6.
Step-by-step explanation:
Substitute all the values in the equation.
n/2 ≥ -3
-10/2 ≥ -3
-5 is not ≥ -3.
n/2 ≥ -3
-7/2 ≥ -3
-3.5 is not ≥ -3.
n/2 ≥ -3
-4/2 ≥ -3
-2 is ≥ -3.
n/2 ≥ -3
-9/2 ≥ -3
-4.5 is not ≥ -3.
n/2 ≥ -3
-6/2 ≥ -3
-3 is ≥ -3.
n/2 ≥ -3
-3/2 ≥ -3
-1.5 is ≥ -3.
n/2 ≥ -3
-8/2 ≥ -3
-4 is not ≥ -3.
n/2 ≥ -3
-5/2 ≥ -3
-2.5 is ≥ -3.
n/2 ≥ -3
-2/2 ≥ -3
-1 is ≥ -3.
To solve the inequality n/2 ≥ -3 for n, do these steps.
n/2 ≥ -3
Multiply by 2.
n ≥ -6.