Answer:
![F(x) = 2x^2 - 4x - 3](https://tex.z-dn.net/?f=F%28x%29%20%3D%202x%5E2%20-%204x%20-%203)
![m(x) = x^2 - 9](https://tex.z-dn.net/?f=m%28x%29%20%3D%20x%5E2%20-%209)
Step-by-step explanation:
Since, the general form of a quadratic function is,
![y=ax^2+bx+c](https://tex.z-dn.net/?f=y%3Dax%5E2%2Bbx%2Bc)
When, a > 0 then the graph opens up or have a vertex that is a minimum,
And, when a < 0 then the graph is opens down or have a vertex that is maximum,
Now, If the c > 0 then the y-intercept of the function is positive,
While, if c < 0 then the y-intercept of the function is negative.
![F(x) = 2x^2 - 4x - 3](https://tex.z-dn.net/?f=F%28x%29%20%3D%202x%5E2%20-%204x%20-%203)
2 > 0 ⇒ f(x) opens up,
Also, -3 < 0, ⇒ f(x) has a negative y-intercept.
![g(x) = x^2 + x + 1](https://tex.z-dn.net/?f=g%28x%29%20%3D%20x%5E2%20%2B%20x%20%2B%201)
1 > 0 ⇒ g(x) opens up,
Also, 1 >0, ⇒ g(x) has a positive y-intercept.
![h(x) = - 2x^2 + 3x - 1](https://tex.z-dn.net/?f=h%28x%29%20%3D%20-%202x%5E2%20%2B%203x%20-%201%20)
- 2 < 0 ⇒ h(x) opens down,
Also, -1 < 0, ⇒ h(x) has a negative y-intercept.
![m(x) = x^2 - 9](https://tex.z-dn.net/?f=m%28x%29%20%3D%20x%5E2%20-%209%20)
1 > 0 ⇒ m(x) opens up,
Also, -9 < 0, ⇒ m(x) has a negative y-intercept.