Answer:
5x+1
Step-by-step explanation:
(4x+2)+(x-1)=
Combine like terms
4x+x +2 -1
5x+1
Answer:
Step-by-step explanation:
14/15 - 1/3
= 6/10
In simplest form
= 3/5
Answer: B. A quadrilateral that has diagonals that do not bisect each other.
Step-by-step explanation:
- A parallelogram is a quadrilateral whose opposite sides are equal or congruent and parallel. Also, the opposite sides in parallelogram are equal or congruent and the sum of two adjacent angles is 180 degrees.The diagonals of parallelogram bisect each other.
Therefore by the properties of parallelogram the choice that does NOT describe a parallelogram is " <em>A quadrilateral that has diagonals that do not bisect each other</em>.".
X<<span>y+<span>3 its simple here is your answer</span></span>
Answer:
![4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
Another complex expression, let's simplify it step by step...
We'll start by re-writing 256 as 4^4
![\sqrt[3]{256 x^{10} y^{7} } = \sqrt[3]{4^{4} x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Then we'll extract the 4 from the cubic root. We will then subtract 3 from the exponent (4) to get to a simple 4 inside, and a 4 outside.
![\sqrt[3]{4^{4} x^{10} y^{7} } = 4 \sqrt[3]{4 x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Now, we have x^10, so if we divide the exponent by the root factor, we get 10/3 = 3 1/3, which means we will extract x^9 that will become x^3 outside and x will remain inside.
![4 \sqrt[3]{4 x^{10} y^{7} } = 4x^{3} \sqrt[3]{4 x y^{7} }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D)
For the y's we have y^7 inside the cubic root, that means the true exponent is y^(7/3)... so we can extract y^2 and 1 y will remain inside.
![4x^{3} \sqrt[3]{4 x y^{7} } = 4x^{3} y^{2} \sqrt[3]{4 x y}](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D)
The answer is then:
![4x^{3} y^{2} \sqrt[3]{4 x y} = 4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)