The one day pay is $106.25 rounded to the nearest hundredth.
<u>Step-by-step explanation:</u>
<u>From the table shown :</u>
- The timing shown in the morning is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
It is given that, the pay is $12.5 per hour.
Therefore, the pay earned in the morning = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
- The timing shown in the afternoon is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
Therefore, the pay earned in the afternoon = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
The pay for 1 day = pay earned in the morning section + pay earned in the afternoon section.
⇒ 53.125 + 53.125
⇒ 106.25
∴ The one day pay is $106.25 rounded to the nearest hundredth.
Answer:
c = 2 or c = -2
Step-by-step explanation:

Hope this helps.
45 cookies will serve 15 students.
You would multiply 15 by 2 that would give you 30, therefore you multiply 45 by 2 which will be 90.
90 cookies will serve 30 students
Answer:
C. x =3
Step-by-step explanation:
Extraneous solution is that root of a transformed equation that doesn't satisfy the equation in it's original form because it was excluded from the domain of the original equation.
Let's solve the equation first

Hence, we can conclude that x=3 is an extraneous solution of the equation ..
Answer:
It is +2 or since (+2)*(+2 ) gives. If you think that it would be (-2) also then you are wrong because root of a positive rational number is always positive number.
Step-by-step explanation:
Let the square root of four be ‘k’.
Then we have
(4)^1/2=k
(Squaring both sides)
4=(k)^2
=>(k)^2–4=0
=>(k)^2-(2)^2=0
=>[k+2][k-2]=0 {since (a)^2-(b)^2=(a+b)(a-b)}
if product of two numbers is 0 then either of one must be zero.
If k+2=0 then k=-2
If k-2=0 then k=2
From here we got two answers but -2 should be omitted because when we square an equation we add “root extra”which means that when we square an equation one root is added.