1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
13

Solve the system 2x+2y+z=-2 -x-2y+2z=-5 2x+4y+z=0

Mathematics
1 answer:
drek231 [11]3 years ago
8 0

The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

Step-by-step explanation:

The given is,

                          2x+2y+z=- 2.......................................(1)

                         -x-2y+2z=-5......................................(2)

                            2x+4y+z=0.........................................(3)

Step:1

           Equation (2) is multiplied by -1            ( Eqn(2) × -1 )

                                         x+2y-2z=5.............................(4)

          Subtract the equation (1) and (4)

                                        2x+2y+z=- 2

                                         x+2y-2z=5

                 ( - )

           (2x-x)+(2y-2y)+(z+2z)=(-2-5)

                                                  x+3z=-7......................(5)

Step:2

          Equation (2) is multiplied by -2                 ( Eqn(2) × -2)

                                        2x+4y-4z=10........................(6)

         Subtract equation (6) and (3),                  

                                        2x+4y-4z=10

                                         2x+4y+z=0

                   ( - )

       (2x-2x)+(4y-4y)+(-4z-z)= (10-0)

                                                     -5z=10

                                                         z = - \frac{10}{5}

                                                         z = -2

         From the equation (5),

                                                  x+3z=-7  

                                          x+(3)(-2)=-7

                                                           x = -7+6

                                                            x = -1

         From equation (1),

                                            2x+2y+z=- 2

          Substitute x and z values,

                               (2)(-1)+2y+(-2)=-2

                                                     2y - 4=2

                                                           2y=4-2

                                                           2y=2

                                                            y=\frac{2}{2}

                                                             y = 1

Step:3

                Check for solution,

                                  -x-2y+2z=-5

                Substitute x,y and z values,

               -(-1)-(2)(1)+(2)(-2)=-5

                                         1-2-4=-5

                                                    -5 = -5

Result:

              The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

You might be interested in
Adele has 6 sheets of stickers .Bea has 9 sheets of the same stickers.how many stickers do they have altogether?
Jlenok [28]
They have 15 sheets of stickers all together
7 0
3 years ago
Read 2 more answers
Find the solution of the initial value problem<br><br> dy/dx=(-2x+y)^2-7 ,y(0)=0
Leokris [45]

Substitute v(x)=-2x+y(x), so that \dfrac{\mathrm dv}{\mathrm dx}=-2+\dfrac{\mathrm dy}{\mathrm dx}. Then the ODE is equivalent to

\dfrac{\mathrm dv}{\mathrm dx}+2=v^2-7

which is separable as

\dfrac{\mathrm dv}{v^2-9}=\mathrm dx

Split the left side into partial fractions,

\dfrac1{v^2-9}=\dfrac16\left(\dfrac1{v-3}-\dfrac1{v+3}\right)

so that integrating both sides is trivial and we get

\dfrac{\ln|v-3|-\ln|v+3|}6=x+C

\ln\left|\dfrac{v-3}{v+3}\right|=6x+C

\dfrac{v-3}{v+3}=Ce^{6x}

\dfrac{v+3-6}{v+3}=1-\dfrac6{v+3}=Ce^{6x}

\dfrac6{v+3}=1-Ce^{6x}

v=\dfrac6{1-Ce^{6x}}-3

-2x+y=\dfrac6{1-Ce^{6x}}-3

y=2x+\dfrac6{1-Ce^{6x}}-3

Given the initial condition y(0)=0, we find

0=\dfrac6{1-C}-3\implies C=-1

so that the ODE has the particular solution,

\boxed{y=2x+\dfrac6{1+e^{6x}}-3}

5 0
3 years ago
2.3*10^8+4.7*10^7<br><br> Express answer in scientific notation.
juin [17]

Answer:

2.3 * 80 + 4.7 * 70

Step-by-step explanation:

6 0
3 years ago
Need help please ty (:<br> Find x.
MArishka [77]
<h3>Answer:  x = 18 (choice B)</h3>

===================================

Work Shown:

Through the inscribed angle theorem, we can say that 2 times the inscribed angle gets us the arc that the inscribed angle cuts off.

2*(inscribed angle) = arc measure

2*(2x+2) = 76

4x+4 = 76

4x+4-4 = 76-4 ... subtract 4 from both sides

4x = 72

4x/4 = 72/4 ... divide both sides by 4

x = 18

8 0
3 years ago
Read 2 more answers
Plz I need this fast!! ILL GIVE BRAINLIEST!!!
Ulleksa [173]

Answer:

its 18 trust

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • 9% of what equals 4.5
    11·2 answers
  • find the length of the hypotenuse of a right triangle with legs measuring 6 cm and 9 cm. round your answer to the nearest tenth
    10·1 answer
  • What is the solution to the system of linear equations graphed below?
    15·2 answers
  • Lily grew 20 centimeters in 1 year. She is now 1.8 m tall. How tall was she 1 year ago?
    14·1 answer
  • An open sentence that contains the symbol , or ≥ is called a(n)
    13·2 answers
  • Help please !! Thank u
    14·1 answer
  • On Tuesday, there were 400 customers at a movie theater, and each customer paid $8 for a ticket. On Wednesday, the owner of the
    6·1 answer
  • Find DE (trigonometry)<br> Show work pls
    14·1 answer
  • What is 1.5 as a ratio​
    15·1 answer
  • A shoe box is covered with packing paper before being shipped. The paper costs $0.02 per square inch. How much will it cost to c
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!