1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
13

Solve the system 2x+2y+z=-2 -x-2y+2z=-5 2x+4y+z=0

Mathematics
1 answer:
drek231 [11]3 years ago
8 0

The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

Step-by-step explanation:

The given is,

                          2x+2y+z=- 2.......................................(1)

                         -x-2y+2z=-5......................................(2)

                            2x+4y+z=0.........................................(3)

Step:1

           Equation (2) is multiplied by -1            ( Eqn(2) × -1 )

                                         x+2y-2z=5.............................(4)

          Subtract the equation (1) and (4)

                                        2x+2y+z=- 2

                                         x+2y-2z=5

                 ( - )

           (2x-x)+(2y-2y)+(z+2z)=(-2-5)

                                                  x+3z=-7......................(5)

Step:2

          Equation (2) is multiplied by -2                 ( Eqn(2) × -2)

                                        2x+4y-4z=10........................(6)

         Subtract equation (6) and (3),                  

                                        2x+4y-4z=10

                                         2x+4y+z=0

                   ( - )

       (2x-2x)+(4y-4y)+(-4z-z)= (10-0)

                                                     -5z=10

                                                         z = - \frac{10}{5}

                                                         z = -2

         From the equation (5),

                                                  x+3z=-7  

                                          x+(3)(-2)=-7

                                                           x = -7+6

                                                            x = -1

         From equation (1),

                                            2x+2y+z=- 2

          Substitute x and z values,

                               (2)(-1)+2y+(-2)=-2

                                                     2y - 4=2

                                                           2y=4-2

                                                           2y=2

                                                            y=\frac{2}{2}

                                                             y = 1

Step:3

                Check for solution,

                                  -x-2y+2z=-5

                Substitute x,y and z values,

               -(-1)-(2)(1)+(2)(-2)=-5

                                         1-2-4=-5

                                                    -5 = -5

Result:

              The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

You might be interested in
A patrolman spends 25% every day completing paperwork. The patrolman’s shift each day is 8 hours. How much of his time does he s
Mrrafil [7]

8 \times 25\% \\  = 8 \times  \dfrac{25}{100}  \\  = 2

Answer : He spends 2 hours doing paperwork each day.

Hope this helps. - M
4 0
4 years ago
A car can travel 30 miles on a gallon of gas and had a 20 gallon gas tank. Let g be the number of gallons of gas the car has in
Fudgin [204]

Answer:

The domain is the number of gallons and the range is the distance traveled.

Since the car can travel 30 miles one gallon of gas, we multiply by 12 to get the distance the car can travel in 12 gallons of gas.


5 0
3 years ago
A shipment of 105 Otter box covers for I-phones has arrived. The total invoice (excluding tax, shipping, etc.) is $3,849.75.
bezimeni [28]
<span>3,849.75 </span>÷ 49.95 = 77 (Calculator)

Sense you would like it explained than the question is asking how many otter box Defender Covers where shipped in that price. So when you have that they want the amount of Otter Box Defenders than you divide the amount paid for the shipment with the amount of the otter box defender price.

I hope this is helpful.
3 0
3 years ago
Use Cramer Rule to solve the following system: 8x−5y=70 and 9x+7y=3
nlexa [21]

Answer:

(x,y) = (5,-6)

Step-by-step explanation:

\underline{\textbf{Determinant of a matrix.}}\\\\\text{For a}~ 2 \times 2 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2\\b_1&b_2 \end{vmatrix} = a_1b_2 - a_2b_1\\\\\\\text{For a}~ 3 \times 3 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2&a_3\\ b_1&b_2&b_3\\ c_1&c_2&c_3 \end{vmatrix} = a_1\begin{vmatrix} b_2&b_3\\c_2&c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1&b_3\\c_1&c_3 \end{vmatrix}+ a_3 \begin{vmatrix} b_1&b_2\\c_1&c_2 \end{vmatrix}\\\\\\

                     ~~~~~~~~~~~~~~~~~~=a_1(b_2c_3-b_3c_2) -a_2(b_1c_3-b_3c_1) +a_3(b_1c_2-b_2c_1)

\underline{\textbf{Cramer's Rule to solve a system of two equations.}}\\\\\text{Consider the system of two equations:}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_1x + b_1 y= c_1\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_2x +b_2 y = c_2\\\\\text{Here,}\\\\x = \dfrac{D_x}{D}= \dfrac{\begin{vmatrix} c_1&b_1\\c_2&b_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\\\ y= \dfrac{D_y}{D}= \dfrac{\begin{vmatrix} a_1&c_1\\a_2&c_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\

\underline{\textbf{Solution:}}\\\\~~~~~~~~~~~~~~~~~~~~~~~8x-5y = 70~~~~~~...(i)\\\\~~~~~~~~~~~~~~~~~~~~~~~9x +7y = 3~~~~~~~...(ii)\\\\\text{Applying Cramer's rule:}\\\\x = \dfrac{D_x}{D}\\\\\\~~=\dfrac{\begin{vmatrix} 70& -5 \\3&7 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=\dfrac{70(7) -(-5)(3)}{(8)(7)-(-5)(9)}\\\\\\~~=\dfrac{490+15}{56+45}\\\\\\~~=\dfrac{505}{101}\\\\\\~~=5

y = \dfrac{D_y}{D}\\\\\\~~=\dfrac{\begin{vmatrix} 8& 70 \\9&3 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=\dfrac{(8)(3) -(70)(9)}{(8)(7)-(-5)(9)}\\\\\\~~=\dfrac{24-630}{56+45}\\\\\\~~=-\dfrac{606}{101}\\\\\\~~=-6

\textbf{Hence, the solution to the system of equation is}~ (x,y) = (5,-6)

7 0
2 years ago
two cars travel in opposite directions, starting from the same place at the same time. One travels at an average rate of 48 mile
asambeis [7]
So in 1 hour they will be 48+55=103 miles apart
how many hours will it be in 618
103 times x hours=618
divide both sides by 103
x=618/103
x=6

the answer is 6 hours
6 0
3 years ago
Other questions:
  • What is the quotient (6x4 − 15x3 + 10x2 − 10x + 4) ÷ (3x2 + 2)?
    11·1 answer
  • When x-y=3 work out the value of y-x
    10·1 answer
  • Enter your answer and show all the steps that you use to solve this problem in the space provided. A.Solve a–9=20 B.Solve b–9&gt
    5·1 answer
  • Which of the following is rational number?<br> a.) π<br> b.) 1.425<br> c.) √50<br> d.)√-4
    5·2 answers
  • Factor f(x) = (x³-x²)(3x+3)
    10·1 answer
  • No files!!! <br> Will give brainliest and please don’t guess
    15·2 answers
  • Write the equation in slope-intercept form. y-2=6(x+1)
    12·1 answer
  • What’s the solution to the linear equation?
    11·2 answers
  • What is the initial value of the exponential function shown on the graph?
    11·2 answers
  • I have the 2nd and last one not sure of the 1st or 3rd
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!