Answer:
(2, 5)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y - 3x = 1
2y - x = 12
<u>Step 2: Rewrite Systems</u>
y - 3x = 1
- Add 3x on both sides: y = 3x + 1
<u>Step 3: Redefine Systems</u>
y = 3x + 1
2y - x = 12
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2(3x + 1) - x = 12
- Distribute 2: 6x + 2 - x = 12
- Combine like terms: 5x + 2 = 12
- Isolate <em>x</em> term: 5x = 10
- Isolate <em>x</em>: x = 2
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 2y - x = 12
- Substitute in <em>x</em>: 2y - 2 = 12
- Isolate <em>y </em>term: 2y = 10
- Isolate <em>y</em>: y = 5
Installation : $1.98
carpet : $71.91
in all : $73.89
Answer:
three-forth minus one-fifth times four
Step-by-step explanation:
Answer:
3. f(12) = -10; f(37) = -60
4. f(12) = -102; f(37) = -352
Step-by-step explanation:
3. Put the numbers in the formula and do the arithmetic:
f(12) = 12 -2(12-1) = 12 -22 = -10
f(37) = 12 -2(37-1) = 12 -72 = -60
__
4. The explicit formula for an arithmetic sequence with first term a1 and common difference d is ...
an = a1 +d(n -1)
Your sequence has a first term a1=8 and a common difference d=-10.
As above, fill in the numbers and do the arithmetic.
f(12) = 8 -10(12 -1) = -102
f(37) = 8 -10(37-1) = -352