Refrection of point (0, 0) across y = 3 gives point (0, 6)
Refrection of point (0, -6) across the x-axis gives point (0, -6)
Answer:
<em>True
</em>
Step-by-step explanation:
<em>Rate Of Change Of Functions
</em>
Given a function y=f(x), the rate of change of f can be computed as the slope of the tangent line in a specific point (by using derivatives), or an approximation by computing the slope of a secant line between two points (a,b) (c,d) that belong to the function. The slope can be calculated with the formula

If this value is calculated with any pair of points and it always results in the same, then the function is linear. If they are different, the function is non-linear.
Let's take the first two points from the table (1,1)(2,4)

Now, we use the second and the third point (2,4) (3,9)

This difference in values of the slope is enough to state the function is non-linear
Answer: True
Answer:
(2, 1)
Step-by-step explanation:
The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the -2:
3(-9x + 2y = -16)--> -27x + 6y = -48
-2(19x + 3y = 41)--> -38x - 6y = -82
Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:
-65x = -130 so
x = 2
Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:
19(2) + 3y = 41 so
38 + 3y = 41 and
3y = 3. Therefore,
y = 1
The solution set then is (2, 1)
Answer:
$21
Step-by-step explanation:
7% = .07
$300 multiplied by .07 = $21