1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
3 years ago
6

Average Earnings of Workers The average earnings of year-round full-time workers 25–34 years old with a bachelor’s degree or hig

her were $58,500 in 2003. If the standard deviation is $11,200, what can you say about the percentage of these workers who earn?
a. Between $47.300 and $69,700?
b. More than $80.900?
c. How likely is it that someone earns more than $100,000?

Mathematics
1 answer:
beks73 [17]3 years ago
3 0

Answer:

a. 68% of the workers will earn between $47300 and $69700.

b. 2.5% of workers will earn above $89000

c. Approximately 0

Step-by-step explanation:

The standard normal distribution curve in the attached graph is used to solve this question.

a. The value $47300 is a standard deviation below the mean i.e. 58500-11200=47300. While $69700 is a standard deviation above the mean. I.e. 58500+12000=69700.

Between the first deviation below and above the mean, you have 34%+34%=68% of the salary earners within this range. So we have 68%of staffs earning within this range

b. The second standard deviation above the mean is $80900. i.e. 58500+11200+11200=$80900

We have 50%+13.5%+2.5%= 97.5% earning below $80900. Therefore, 100-97.5= 2.5% of the workers earn above this amount.

c. From the Standard Deviation Rule, the probability is only about (1 -0 .997) / 2 = 0.0015 that a normal value would be more than 3 standard deviations away from its mean in one direction or the other. The probability is only 0.0002 that a normal variable would be more than 3.5 standard deviations above its mean. Any more standard deviations than that, and we generally say the probability is approximately zero.

You might be interested in
What is the translation from quadrilateral IJK to<br> quadrilateral I'J’K’
liberstina [14]

Answer:

The translation from triangle IJK to triangle I'J'K' is T_{(2, 6)} which is 2 units to the right and 6 units up

Step-by-step explanation:

The coordinates of triangle JKI are;

J has coordinates (1, - 1)

K has coordinates (1, - 4)

I has coordinates (-3, - 2)

While, the coordinates of translation triangle J'K'I' are;

J' has coordinates (3, 5)

K' has coordinates (3, 2)

I' has coordinates (-1, 4)

Which give the translation as follows

Translation in the y-coordinate (y values);

For J = 5 - (-1) = 6

For K = 2 - (-4) = 6

For I = 4 - (-2) = 6

Translation in the x-coordinate (x values);

For J = 3 - 1 = 2

Therefore, the translation from triangle IJK to triangle I'J'K' is T(2, 6) which is 2 units to the right and 6 units up

6 0
3 years ago
Hi! can you please help me and show me how you got your answer? thank you!
Kamila [148]

Answer:

Step-by-step explanation:multipy -4x and 4 by 2 were the 8x and the -8x would cancel then add and bring down answer of x=15

5 0
3 years ago
How do you find the value for x? <br> Find the value of x ?
bogdanovich [222]

Answer:

x = 27

Step-by-step explanation:

Both angles together form 180 degree.

Set your formula up as

180 = (5x+2) + (x + 16)

180 = 5x + 2 + x + 16

180 = 6x  + 18

180 - 18 = 6x

162 = 6x

162/6 = x

27 = x

5 0
3 years ago
Read 2 more answers
Use a translator or whatever, just don't know how to do it. Will give most helpful answer brainliest, with an explanation and an
bekas [8.4K]
The answer is -60. this is because the signs implemented in front of numbers give it a sort pattern .

when there are two additions the last number after the positive sign will give a positive number 1 greater than the initial number for example + 5 + 6. Answer afterward will be + 7 and for negative sign eg: - 7 - 8 in the question will give the answer -8 the same number after a negative (-) sign .
Hope this helps
4 0
3 years ago
Consider the following.3x + 3y = 8(a) Find y' by implicit differentiation.(b) Solve the equation explicitly for y and differenti
ludmilkaskok [199]

Answer:

a.y'=-1

b.y'=-1

c.Yes

Step-by-step explanation:

We are given that consider a function

3x+3y=8

Implicit function: That function is a relation in which dependent variable can not be expressed in terms of independent variable

Explicit function: It is that function in which dependent variable can be expressed in terms of independent variable.

a.3x+3y=8

Differentiate w.r.t x then we get

3+3\frac{dy}{dx}=0

3\frac{dy}{dx}=-3

\frac{dy}[dx}=\frac{-3}{3}=-1

\frac{dy}{dx}=y'=-1

b.3x+3y=8

3y=8-3x

y=\frac{8-3x}{3}

Differentiate w.r.t x then we get

\frac{dy}{dx}=\frac{-3}{3}=-1

\frac{dy}{dx}=y'=-1

When we substituting the value of y obtained from part b into a solution of part a then we get

y'=-1

Hence, solutions are consistent.

8 0
3 years ago
Other questions:
  • There are six poles on a side of a 1 km 200 m long straight road such that there is a pole at the starting and end points of the
    6·1 answer
  • What is 0.86 x 0.24 help me with this.
    7·1 answer
  • sandra brings cheese and crakers for lunch every 6 days, and lily brings cheese and crakers every 8 days. if they both brought c
    12·1 answer
  • 6.13x7 approximate value<br>what is the answer​
    6·1 answer
  • I need help. With this p
    14·1 answer
  • Quadrilateral LMNO has diagonals that intersect at point P. If LP=NP, MP = y + 25, and OP = 5y + 29, find the length of MO such
    10·1 answer
  • The city police are trailing the movements of a suspect through the GPS tracker on his phone. The suspect's apartment is represe
    13·1 answer
  • Ken went to a county fair and spent $5 on admission, $6.50 on games, and $7.21 on food. If he had $30 before he went to the fair
    5·2 answers
  • Help pls it math !!!!
    13·1 answer
  • A survey of the 12th grade students at Gaffigan High School found that 84% of the seniors have their driver’s licenses, 16% of s
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!