1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
11

What is the estimate of 42 x 58??

Mathematics
2 answers:
ExtremeBDS [4]3 years ago
5 0
I hope this helps you 42×58=2436
m_a_m_a [10]3 years ago
5 0
40 x 60 = 2400 ..........
You might be interested in
The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of pi is 3.14
tangare [24]
\bf \textit{area of a sector of a circle}\\\\
A=\cfrac{\theta\pi r^2}{360}\qquad 
\begin{cases}
\theta=\textit{angle in degrees}\\
r=radius\\
----------\\
r=8\\
A=125.6
\end{cases}
\\\\\\
360A=\theta\pi r^2\implies \cfrac{360A}{\pi r^2}=\theta\implies \cfrac{360\cdot 125.6}{\pi 8^2}=\theta
4 0
3 years ago
The diameter of a sphere is 6 ft. Find the exact volume of the sphere.
OleMash [197]

Answer:

V ≈ 113.1ft³

Step-by-step explanation:

the answer is V ≈ 113.1ft³.

I hope this helps you.

6 0
3 years ago
Read 2 more answers
A $25,000 purchase decreases 12% in value per year. Determine the values of the purchase after 3 years and after 7 years.
choli [55]
Use Socratic or slider
4 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Four times a number is greater than 48. what are the possible values for the number?​
Novosadov [1.4K]

Answer:

52 =4x 13

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • The base of a solid right pyramid is a regular hexagon with a radius of 2x units and an apothem of units. A solid right pyramid
    15·2 answers
  • What is true about days and min.
    14·1 answer
  • The foreman in the welding department wanted to know what value of allowance to use for a particular section of the shop. A work
    13·1 answer
  • Miss Ramirez is making pies to sell at a local farmers market. It cost five dollars to make each pi plus a one time cost of $30
    9·1 answer
  • Jessica bought 2 slices of pizza and a soda for $6.25. Alfredo bought 3 slices of pizza and a soda
    6·2 answers
  • In the library on a university campus, there is a sign in the elevator that indicates a limit of 16 persons. Furthermore, there
    11·1 answer
  • Question
    12·1 answer
  • What is the median of these numbers<br> 10, 12, 8, 11, 10, 15, 7
    9·2 answers
  • A school wants to investigate the amount of exercise students do.
    15·1 answer
  • Helpppp: Find the area of the parallelogram.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!