Answer:
Step-by-step explanation:
<em><u>Given</u></em><u>:</u> A line m is perpendicular to the angle bisector of ∠A. We call this
intersecting point as D. Hence, in figure ∠ADM=∠ADN =90°.
AD is angle bisector of ∠A. Hence, ∠MAD=∠NAD.
<u><em>To Prove</em></u>: <em><u>ΔAMN is an isosceles triangle. i.e any two sides in ΔAMN are</u></em>
<em> </em><em><u>equal. </u></em>
<em><u>Solution</u></em>: Now, In ΔADM and ΔADN
∠MAD=∠NAD ...(1) (∵Given)
AD=AD ...(2) (∵common side)
∠ADM=∠ADN ...(3) (∵Given)
<u><em> Hence, from equation (1),(2),(3) ΔADM ≅ ΔADN</em></u>
( ∵ ASA congruence rule)
⇒<u><em> AM=AN</em></u>
Now, In Δ AMN
AM=AN (∵ Proved)
Hence, ΔAMN is an isosceles triangle.