Answer:
First, solve for two points as an equation instead of an inequality to find the boundary line for the inequality.
For:
x
=
0
y
=
0
+
5
y
=
5
Or
(
0
,
5
)
For:
x
=
−
2
y
=
−
2
+
5
y
=
3
Or
(
−
2
,
3
)
We can now plot the two points on the coordinate plane and draw a line through the points to mark the boundary of the inequality.
The boundary line will be solid because the inequality operator contains an "or equal to" clause.
graph{(x^2+(y-5)^2-0.125)((x+2)^2+(y-3)^2-0.125)(y-x-5)=0 [-20, 20, -10, 10]}
Now, we can shade the left side of the line.
graph{(y-x-5) >= 0 [-20, 20, -10, 10]}
7 x 3 = 21 so it is 21 ft cm your welcome
Answer:
hshdnndn
Step-by-step explanation:
hshsbsbbssisisjjs
First we'll do two basic steps. Step 1 is to subtract 18 from both sides. After that, divide both sides by 2 to get x^2 all by itself. Let's do those two steps now
2x^2+18 = 10
2x^2+18-18 = 10-18 <<--- step 1
2x^2 = -8
(2x^2)/2 = -8/2 <<--- step 2
x^2 = -4
At this point, it should be fairly clear there are no solutions. How can we tell? By remembering that x^2 is never negative as long as x is real.
Using the rule that negative times negative is a positive value, it is impossible to square a real numbered value and get a negative result.
For example
2^2 = 2*2 = 4
8^2 = 8*8 = 64
(-10)^2 = (-10)*(-10) = 100
(-14)^2 = (-14)*(-14) = 196
No matter what value we pick, the result is positive. The only exception is that 0^2 = 0 is neither positive nor negative.
So x^2 = -4 has no real solutions. Taking the square root of both sides leads to
x^2 = -4
sqrt(x^2) = sqrt(-4)
|x| = sqrt(4)*sqrt(-1)
|x| = 2*i
x = 2i or x = -2i
which are complex non-real values
1.96, if you multiply that by the length, (which is 2.5) then you will get the area of 4.9 hope this helps