The data for linear pair are;
The domain are the values (input) on the x-axis which is the time
The range are the values input on the y-axis which is the height reached by the balloon
Part A
The interval of the domain during which the water balloon height is increasing is 0 ≤ x ≤ 2
Part B
The intervals of the domain the water balloon’s height stays the same are;
2 ≤ x ≤ 3 and 6 ≤ x ≤ 8
Part C
The water balloon height is decreasing at the following intervals;
At the interval 3 ≤ x ≤ 4
The rate of decrease = (20 ft. – 80 ft.)/(4 s – 3 s) = -20 ft./s.
At the interval 4 ≤ x ≤ 6
The rate of decrease = (0 ft. – 20 ft.)/(6 s – 4 s) = -10 ft./s
Therefore, the interval of the domain that the balloon’s height is decreasing the fastest is 3 ≤ x ≤ 4
Part D
According to Newton’s law of motion, provided that the no additional force is applied to the the balloon, at 10 seconds, the height of the water balloon is 0 ft. given that the height of the balloon is constantly decreasing from 3 seconds after being thrown off the roof, reaching a height of 0ft. at 6 seconds and maintaining that height up until 8 seconds.
By extending the graph further, the height of 0 ft. is obtained at 10 seconds after the balloon is thrown
60 x .055 = $3.3
the sales tax paid is 3 dollars and 3 cents
Area of a circle = πr²
Area of a circle = 3.14 x 11² = 379.94 in²
Area painted in blue = 379.94 ÷ 2 = 189.97 in²
Area painted in purple = 189.97 in²
--------------------------
Answer: 189.97 in²
--------------------------
Answer:
6.63 cm
Step-by-step explanation:
The segments within the circle form a right angle. Triangle CRS as a right triangle must follow the Pythagorean theorem which says the square of each leg adds to the square of the hypotenuse.
a² + b² = c²
Here a is unknown, b = 10 and c = 12.
a² + 10² = 12²
a² + 100 = 144
a² = 44
a = √44 = 6.63