At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
It should be B!!!! Because you are suppose divide30km by 5 which is 6km/h.
Answer:
= 1,386 m / s
Explanation:
Rocket propulsion is a moment process that described by the expression
- v₀ =
ln (M₀ / Mf)
Where v are the velocities, final, initial and relative and M the masses
The data they give are the relative velocity (see = 2000 m / s) and the initial mass the mass of the loaded rocket (M₀ = 5Mf)
We consider that the rocket starts from rest (v₀ = 0)
At the time of burning half of the fuel the mass ratio is that the current mass is
M = 2.5 Mf
- 0 = 2000 ln (5Mf / 2.5 Mf) = 2000 ln 2
= 1,386 m / s
Answer:
Might be better to use geophysicists to date the moon rock via Radioactive Age-Dating Carbon 12
Explanation: