To solve this problem, we must take two important steps. First we will convert all the given units, to international system. Later we will define the torque, which is given as the product between the radius of application of the force and the Force acting on the body. Mathematically the latter is,

Here,
r = Radius
F = Force
Now the units,

Replacing,


Therefore the torque that the muscle produces on the wrist is 
Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!
The law of conservation of energy is:
-- Energy can't be created or destroyed.
-- Energy can't just appear out of nowhere. If you suddenly have
more energy, then the 'extra' energy had to come from somewhere.
-- Energy can't just disappear. If you suddenly have less energy,
then the 'missing' energy had to go somewhere.
________________________________________
There are also conservation laws for mass and electric charge.
They say exactly the same thing. Just write 'mass' or 'charge'
in the sentences up above, in place of the word 'energy'.
________________________________________
And now I can tell you that the conservation laws for energy and mass
are actually one single law ... the conservation of mass/energy. That's
because we discovered about 100 years ago that mass can convert
into energy, and energy can convert into mass, and it's the total of BOTH
of them that gets conserved (can't be created or destroyed).
How much mass makes how much energy ?
The answer is E = m c² .
Answer:
I want to know how your experience has been on brainly. I hope it is good. I really like spending time helping others here. If you have any other questions please ask me :)
Explanation:
Acceleration of cheetah (a) = 4m/s²
time = 10s
initial velocity(u) = 0
final velocity = v
distance travelled = s
v = u +at = 0 + 10×4 = 40m/s
s = (v²-u²)/2a = 40²/(2×4) = 1600/8 = 200m