The electric force on the electron is opposite in direction to the electric field E. E points in the -y direction, so the electric force will point in the +y direction. The magnitude of the electric force is given by:
F = Eq
F = electric force, E = electric field strength, q = electron charge
We need to set up a magnetic field such that the magnetic force on the electron balances out the electric force. Since the electric force points in the +y direction, we need the magnetic force to point in the -y direction. Using the reversed right hand rule, the magnetic field must point in the -z direction for this to happen. Since the direction is perpendicular to the +x direction of the electron's velocity, the magnetic force is given by:
F = qvB
F = magnetic force, q = charge, v = velocity, B = magnetic field strength
The electric force must equal the magnetic force.
Eq = qvB
Do some algebra to isolate B:
E = vB
B = E/v
Let's solve for the electron's velocity. Its kinetic energy is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = velocity
Given values:
KE = 2.9keV = 4.6×10⁻¹⁶J
m = 9.1×10⁻³¹kg
Plug in and solve for v:
4.6×10⁻¹⁶ = 0.5(9.1×10⁻³¹)v²
v = 3.2×10⁷m/s
B = E/v
Given values:
E = 7500V/m
v = 3.2×10⁷m/s
Plug in and solve for B:
B = 7500/3.2×10⁷
B = 0.00023T
B = 0.23mT
The force of gravity is much weaker than the strong nuclear force. But the strong nuclear force only acts over short distances, such as within the nuclues. The gravitational force can act over infinite distance.
Answer:
g = 0.85 m
Explanation:
g = 
were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x
N
), M is the mass of the earth (5.972 x
kg), and h is the distance of meteoroid to the earth.
h = 3.40 x R
= 3.40 x 6371 km
h = 21661.4 km
= 21661400 m
Thus,
g = 
= 
= 0.84944
g = 0.85 m
The acceleration due to the Earth's gravitation is 0.85 m
.
Answer:
All of the above
Explanation:
because these are all senses of the body and therefore you're receiving signals from all of them all the time