If the rock is just sitting there and you want to SLIDE it, then you have to push it with a force of at least
(251 kg) x (9.8 m/s²) x (μ) =
(2,459 Newtons) x (the coefficient of static friction on that surface)
Question:
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
A. sinks slightly
B. rises slightly
C. floats at the same height
D. bobs up and down about its old position
Answer:
The correct answer is C) floats at the same height
Explanation:
The liquid is incompressible because its density very high and leaves no room for further compaction whether or not there is atmospheric pressure. So when you put a cork on the liquid, pressure or no pressure, there is no displacement hence it floats on the same height regardless of the absence of air.
Cheers!
Answer:
Approximately
upwards (assuming that
.)
Explanation:
External forces on this astronaut:
- Weight (gravitational attraction) from the earth (downwards,) and
- Normal force from the floor (upwards.)
Let
denote the magnitude of the normal force on this astronaut from the floor. Since the direction of the normal force is opposite to the direction of the gravitational attraction, the magnitude of the net force on this astronaut would be:
.
Let
denote the mass of this astronaut. The magnitude of the gravitational attraction on this astronaut would be
.
Let
denote the acceleration of this astronaut. The magnitude of the net force on this astronaut would be
.
Rearrange
to obtain an expression for the magnitude of the normal force on this astronaut:
.
If you mean climate change. Then scientists can study it by seeing where places and things are eroded.