Deceleration—the ability to slow down and control force production—is often ignored during training; but deceleration technique is critical for most sports. Speed is often the factor that separates the elite from the average athlete. Credit source is stack.com have a nice day! I told you it was from the internet in case you couldn’t use the internet Hope this helped :)!
The load is the weight of the rock that Jonathan lifts:
The effort instead is the force applied in input to the lever in order to lift the rock:
So, the ratio between load and effort for this exercise is
So, the ratio is 10:1.
Answer:
9 joules of heat energy was produced
Explanation: there is no acceleration therefore its not a kinetic energy
Energy= force × distance
= 3×3
=9
Answer:
65.2 %
Explanation:
Let Q1 = Heat absorbed by the system
Q2 = Heat released by the system
e= (1 - (Q2/Q1)) x 100
e= (1 - (750/2150)) x 100
e= (1 - 0.348) x 100
e= 0.652 x 100
e= 65.2 %
Vertical force on the box=mg
<span>the component of gravity parallel=mg*SinTheta </span>
<span>the component of gravity normal=mg*CosTheta </span>
<span>frictional force up the plane: mg*cosTheta*mu max, but if it is sitting still, it is equal and opposite to mg*cosTheta (it cannot be greater than this or it would go up the plane).</span>