Answer:
it would help her know how to prepare her teaching to match the students learning and expectations
Step-by-step explanation:
This idea of opening this tutoring service for students in these grades would prove a success if if martine has adequate knowledge of her students/customers. That is the learners requirements, their expectations, their experiences, and their strengths and weaknesses in particular subject areas.
Knowledge of these expectations would help to set Martine on the path of tutoring success and this would attract more students. So for her to have a strong tutoring business she has to know the approaches to use to make students strong academically, and how to match learning ability with her teaching.
Answer:
10 yards 2 inches
Step-by-step explanation:
15 yd 5 in - 5 yd 3 in =
10 yards and 2 inches
Answer:
a) maximum; the parabola opens downward
b) positive; it must lie above the x-axis
c) x = 1.5
Step-by-step explanation:
The x-intercepts of a function are the points where the graph of the function crosses the x-axis. The y-values there are zero.
The "differences" of a function are related to the average slope between adjacent points. Second differences are related to the rate of change of the slope of the function. When <em>second differences are negative</em>, as here, the slope of the quadratic function is decreasing, becoming more negative. We say the <em>curvature</em> of the function is <em>negatve</em>, and that it <em>opens downward</em>.
__
<h3>a, b.</h3>
If the graph of the parabola opens downward, and it crosses the x-axis, it must have a <em>maximum</em> that is a <em>positive value of y</em>.
__
<h3>c.</h3>
The graph of a parabola is symmetrical about its vertex. That means points on the same horizontal line are the same distance from the line of symmetry, which must go through the vertex. The x-coordinate of the vertex will be the x-coordinate of the midpoint between the two x-intercepts:
x = (-2 +5)/2 = 3/2
The x-coordinate of the vertex is x = 1.5.
______
<em>Additional comment</em>
The attachment shows a table with three evenly-spaced points on the curve. The calculations show first differences (d1) and second differences (d2). You can see that the sign of the second diffference is negative, in agreement with the given conditions.