well, let's first notice, all our dimensions or measures must be using the same unit, so could convert the height to liters or the liters to centimeters, well hmm let's convert the volume of 1000 litres to cubic centimeters, keeping in mind that there are 1000 cm³ in 1 litre.
well, 1000 * 1000 = 1,000,000 cm³, so that's 1000 litres.
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=1000000~cm^3\\ h=224~cm \end{cases}\implies \stackrel{cm^3}{1000000}=\pi r^2(\stackrel{cm}{224}) \\\\\\ \cfrac{1000000}{224\pi }=r^2\implies \sqrt{\cfrac{1000000}{224\pi }}=r\implies \cfrac{1000}{\sqrt{224\pi }}=r\implies \stackrel{cm}{37.7}\approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D1000000~cm%5E3%5C%5C%20h%3D224~cm%20%5Cend%7Bcases%7D%5Cimplies%20%5Cstackrel%7Bcm%5E3%7D%7B1000000%7D%3D%5Cpi%20r%5E2%28%5Cstackrel%7Bcm%7D%7B224%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%3Dr%5E2%5Cimplies%20%5Csqrt%7B%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Ccfrac%7B1000%7D%7B%5Csqrt%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B37.7%7D%5Capprox%20r)
now, we could have included the "cm³ and cm" units for the volume as well as the height in the calculations, and their simplication will have been just the "cm" anyway.
Well 6^2 is 36 so my best estimate is 6
Answer:
1. 210 m³
2. 320 in³
3. 189 m³
4. 150 cm³
5. 576 ft³
6. 240 m³
7. 220 cm²
8. 150 ft²
9. 132 in²
10. 592 m²
Step-by-step explanation:
Volume = l × w × h
Area = 2 (wl + hl + hw)
Volume is always cubed.(³)
Area is always squared (²)
Plug it in.
Answer: x=4
Steps: (I am assuming your question has a typo in it and by "c" you meant "x")
The rational expression equals zero

only when the numerator equals 0 (the denominator cannot ever be zero):

and that happens only for x=4