Answer:
D.The prism is missing a sixth face, which should be colored white.
Step-by-step explanation:
The shape does not have 2 bases in the picture showed. Therefore, it needs another white square.
Hope it helps! have a good day! :)))))
since we know the endpoints of the circle, we know then that distance from one to another is really the diameter, and half of that is its radius.
we can also find the midpoint of those two endpoints and we'll be landing right on the center of the circle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-2-(-4)]^2+[-5-(-7)]^2}\implies d=\sqrt{(-2+4)^2+(-5+7)^2} \\\\\\ d=\sqrt{2^2+2^2}\implies d=\sqrt{2\cdot 2^2}\implies d=2\sqrt{2}~\hfill \stackrel{~\hfill radius}{\cfrac{2\sqrt{2}}{2}\implies\boxed{ \sqrt{2}}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B-5-%28-7%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%28-5%2B7%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B2%5E2%2B2%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B2%5Ccdot%202%5E2%7D%5Cimplies%20d%3D2%5Csqrt%7B2%7D~%5Chfill%20%5Cstackrel%7B~%5Chfill%20radius%7D%7B%5Ccfrac%7B2%5Csqrt%7B2%7D%7D%7B2%7D%5Cimplies%5Cboxed%7B%20%5Csqrt%7B2%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-2-4}{2}~~,~~\cfrac{-5-7}{2} \right)\implies \left( \cfrac{-6}{2}~,~\cfrac{-12}{2} \right)\implies \stackrel{center}{\boxed{(-3,-6)}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7B-2-4%7D%7B2%7D~~%2C~~%5Ccfrac%7B-5-7%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-6%7D%7B2%7D~%2C~%5Ccfrac%7B-12%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%5Cboxed%7B%28-3%2C-6%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-3}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{\sqrt{2}}{ r} \\[2em] [x-(-3)]^2+[y-(-6)]^2=(\sqrt{2})^2\implies (x+3)^2+(y+6)^2=2](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B-3%7D%7B%20h%7D%2C%5Cstackrel%7B-6%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Csqrt%7B2%7D%7D%7B%20r%7D%20%5C%5C%5B2em%5D%20%5Bx-%28-3%29%5D%5E2%2B%5By-%28-6%29%5D%5E2%3D%28%5Csqrt%7B2%7D%29%5E2%5Cimplies%20%28x%2B3%29%5E2%2B%28y%2B6%29%5E2%3D2)
The balance B at the end of time t is given by
B = P +Prt
8250 = 6000 +6000*r*12.5 . . . . substitute the given information
2250 = 6000*r*12.5 . . . . . . . . . . .subtract 6000
2250/(6000*12.5) = r . . . . . . . . . .divide by the coefficient of r
r = .03 = 3%
Clint earned 3% annual simple interest on his savings.
No it doesn't be i thought that it you would have to find a domain but i couldn't