210 days* (1 week/ 7 days)* (50 inches/ 100 weeks)= 15 inches.
(Note that the units cancel out so you get the answer)
Final answer: 15 inches~
Answer:
<h3>3 secs</h3>
Step-by-step explanation:
Given the height of the object as it drops from the observation deck expressed as;
h= -16t^2+152
To determine the the time it will take the object to be 8 feet above the valley floor, we will substitute h = 8 into the equation and calculate t as shown;
8 = -16t^2+152
subtract 8 from both sides
8-8 = -16t^2+152-8
0 = -16t^2+144
0-144 = -16t^2
-144 = -16t^2
16t^2 = 144
Divide both sides by 16;
16t^2/16 = 144/16
t^2 = 9
t = √9
t = 3seconds
Hence it will take 3 seconds for the object to be 8 feet above the valley floor
Answer:
Step-by-step explanation:
(7-98)(7+98)
= 7^2 - 98^2
= 49 - 9604
= -9555
Answer:
im pretty sure its D :) hope this helps you out.
The main factor when x values are high is the nature of the function. For example, polynomial functions intrinsically grow slower than exponential functions when x is high. Also, the greater the degree of the polynomial, the more the function grows in absolute value as x goes to very large values.
In specific, this means that our 2 exponential functions grow faster than all the other functions (which are polynomial) and thus they take up the last seats. Also, 7^x grows slower than 8^x because the base is lower. Hence, the last is 8^x+3, the second to last is 7^x.
Now, we have that a polynomial of 2nd degree curves upwards faster than a linear polynomial when x is large. Hence, we have that the two 2nd degree polynomials will be growing faster than the 2 linear ones and hence we get that they fill in the middle boxes. Because x^2+4>x^2, we have that x^2+4 is the 4th from the top and x^2 is the 3rd from the top.
Finally, we need to check which of the remaining functions is larger. Now, 5x+3 is larger than 5x, so it goes to the 2nd box. Now we are done.